Abstract
Every eukaryotic chromosome has a centromere, the locus responsible for poleward movement at mitosis and meiosis. Although conventional loci are specified by their DNA sequences, current evidence favors a chromatin-based inheritance mechanism for centromeres. The chromosome segregation machinery is highly conserved across all eukaryotes, but the DNA and protein components specific to centromeric chromatin are evolving rapidly. Incompatibilities between rapidly evolving centromeric components may be responsible for both the organization of centromeric regions and the reproductive isolation of emerging species.
References
99
Referenced
1,118
10.1126/science.293.5532.1070
10.1002/yea.320111609
10.1002/(SICI)1521-1878(199910)21:10<824::AID-BIES4>3.0.CO;2-U
- D. K. Palmer K. O'Day
10.1007/BF00337600
10.1016/S0168-9525(97)01298-5
10.1016/S0959-437X(98)80144-5
10.1016/S0962-8924(00)01739-6
10.1016/S0959-437X(00)00177-5
- Fishel B., Amstutz H., Baum M., Carbon J., Clarke L., Mol. Cell. Biol. 8, 754 (1988). / Mol. Cell. Biol. by Fishel B. (1988)
10.1128/MCB.18.9.5465
10.1016/0168-9525(90)90302-M
10.1093/hmg/6.8.1195
10.1086/302380
10.1086/302924
10.1093/emboj/20.8.2087
10.1101/gr.167601
10.1016/S0092-8674(00)80491-2
10.1006/geno.1999.5742
10.1016/0092-8674(95)90032-2
10.1093/genetics/150.4.1683
10.1093/hmg/9.12.1891
10.1038/ng0497-345
10.1038/nbt0598-431
-
K. H. A. Choo The Centromere (Oxford Univ. Press Oxford 1997).
(
10.1093/oso/9780198577812.001.0001
) 10.1073/pnas.93.16.8512
10.1073/pnas.95.14.8135
10.1083/jcb.136.3.501
10.1007/s004120050376
10.1007/s004120050427
10.1093/hmg/9.2.175
10.1006/excr.1998.4278
10.1007/BF00328227
- D. K. Palmer K. O'Day
10.1073/pnas.88.9.3734
10.1083/jcb.127.3.581
10.1016/S0960-9822(06)00381-2
10.1007/s004120050388
10.1038/3024
10.1016/S0960-9822(06)00382-4
10.1073/pnas.130189697
- The presence of centromeric histones may generate a chromatin structure unique to active centromeres (44 86).
10.1016/S0092-8674(00)81602-5
10.1073/pnas.97.2.716
10.1038/44062
10.1126/science.288.5474.2215
10.1093/genetics/157.3.1293
10.1016/S0168-9525(98)01444-9
10.1083/jcb.153.6.1199
10.1083/jcb.153.6.1209
10.1073/pnas.97.3.1148
10.1073/pnas.95.3.1136
- One example is the kinesinlike protein Cenp-meta in Drosophila (87). Several others localize to regions that surround centromeres including Heterochromatin-associated Protein 1 mammalian CenpB and Topoisomerase II (30).
10.1101/gad.13.9.1140
-
M. Winey E. T. O'Toole Nature Cell Biol. 3 E23 (2001).
(
10.1038/35050663
) 10.1021/bi00406a044
10.1083/jcb.151.5.1113
10.1083/jcb.153.1.101
- R. T. O'Keefe
10.1083/jcb.116.5.1095
10.1007/s004120100132
10.1101/gad.14.7.783
10.1093/genetics/131.3.683
10.1016/0092-8674(94)90075-2
10.1093/genetics/153.3.1153
10.1016/S0092-8674(00)80492-4
10.1093/genetics/150.2.563
10.1038/35055010
10.1016/S0092-8674(00)81158-7
10.1007/s004120050243
10.1038/371215a0
- . 69. For example different satellites have arisen on homologous chromosomes since the divergence of humans and chimpanzees (67). In Drosophila the enigma is even more severe as completely unrelated satellites are found on homologous chromosomes in closely related species (46). Even the best characterized Drosophila centromere consists primarily of two unrelated pentameric satellite blocks (17).
10.1016/0959-437X(93)90012-E
10.1038/38444
10.1128/MCB.19.9.6130
- M. M. Rhoades in Heterosis J. W. Gowen Ed. (Iowa St. College Press Ames IA 1952) pp. 66–80.
10.1093/genetics/152.4.1605
10.1007/s003350040003
10.1002/jcp.1030450509
10.1093/genetics/27.4.395
10.1007/s004390000437
10.1093/genetics/149.1.143
- Cid might not be the only protein whose adaptive evolution can alleviate the deleterious effects of satellite drive. Heterochromatic DNA-binding proteins such as HOAP might rapidly evolve in order to occlude satellite DNAs from centromeric status (88 89).
-
E. S. Buckler 4th et al. Genetics 153 415 (1999).
(
10.1093/genetics/153.1.415
) - The satellite-Cid model for reproductive isolation can be compared with the classical two-locus hypothesis for speciation (90). In that model an ancestral population ( A 1 A 1 B 1 B 1 ) evolves in one population to A 1 A 1 B 2 B 2 and in the other population to A 2 A 2 B 1 B 1 . The alleles A 2 and B 2 are neutral in the background of B 1 and A 1 respectively; however in hybrids ( A 1 A 2 B 1 B 2 ) an epistatic interaction between A 2 and B 2 is deleterious. One problem with this model has been the lack of a plausible mechanism for the deleterious interaction between A 2 and B 2 . In addition neither A 1 A 1 B 2 B 2 nor A 2 A 2 B 1 B 1 would be incompatible with their ancestor A 1 A 1 B 1 B 1 . Our model for satellite-Cid evolution implies an inherently rapid drive process (91 92) together with a molecular mechanism for hybrid incompatibilities. This drive is irreversible in that A 1 A 1 B 1 B 1 would give rise to A 2 A 2 B 2 B 2 and A 3 A 3 B 3 B 3 and so both derived populations become incompatible with their ancestral population.
10.1093/genetics/147.3.937
- In birds sex ratio distortion can result from a competition between the Z and W sex chromosomes for inclusion in the oocyte. Remarkably female birds appear to have the ability to choose between the Z and W at meiosis on the basis of external cues (93).
- The rapid evolution of centromeric histones might also have mitotic consequences. For example dicentric chromosomes might appear in hybrids because of the different sequence preferences of their centromeric histones. The resulting breakage and aneuploidy will reduce viability. The effects of X or Z dicentrics will be more severe in XY or ZW than XX or ZZ consistent with the “dominance” theory of Haldane's rule for hybrid inviability (90).
10.1093/embo-reports/kvd110
10.1083/jcb.150.1.1a
10.1091/mbc.12.6.1671
10.1093/genetics/153.4.1717
10.1098/rstb.1998.0210
- Frank S. A., Evolution 45, 252 (1991). / Evolution by Frank S. A. (1991)
10.1093/genetics/128.4.841
10.1016/S0960-9822(99)80303-0
- B. Buchwitz L. Moore M. Roth unpublished data.
- J. S. Platero K. Ahmed unpublished data.
- We thank S. Biggins B. Byers D. Gottschling C. Langley M. Roth P. Talbert and D. Vermaak for helpful discussions and P. Warburton for Fig. 1C. We are supported by the Howard Hughes Medical Institute (S.H.) the American Cancer Society (K.A.) and the Helen Hay Whitney Foundation (H.S.M.).
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 27, 2002, 5:39 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 4:12 p.m.) |
Indexed | 30 minutes ago (Aug. 30, 2025, 12:01 p.m.) |
Issued | 24 years ago (Aug. 10, 2001) |
Published | 24 years ago (Aug. 10, 2001) |
Published Print | 24 years ago (Aug. 10, 2001) |
@article{Henikoff_2001, title={The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA}, volume={293}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1062939}, DOI={10.1126/science.1062939}, number={5532}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Henikoff, Steven and Ahmad, Kami and Malik, Harmit S.}, year={2001}, month=aug, pages={1098–1102} }