Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Every eukaryotic chromosome has a centromere, the locus responsible for poleward movement at mitosis and meiosis. Although conventional loci are specified by their DNA sequences, current evidence favors a chromatin-based inheritance mechanism for centromeres. The chromosome segregation machinery is highly conserved across all eukaryotes, but the DNA and protein components specific to centromeric chromatin are evolving rapidly. Incompatibilities between rapidly evolving centromeric components may be responsible for both the organization of centromeric regions and the reproductive isolation of emerging species.

Bibliography

Henikoff, S., Ahmad, K., & Malik, H. S. (2001). The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science, 293(5532), 1098–1102.

Authors 3
  1. Steven Henikoff (first)
  2. Kami Ahmad (additional)
  3. Harmit S. Malik (additional)
References 99 Referenced 1,118
  1. 10.1126/science.293.5532.1070
  2. 10.1002/yea.320111609
  3. 10.1002/(SICI)1521-1878(199910)21:10<824::AID-BIES4>3.0.CO;2-U
  4. D. K. Palmer K. O'Day
  5. 10.1007/BF00337600
  6. 10.1016/S0168-9525(97)01298-5
  7. 10.1016/S0959-437X(98)80144-5
  8. 10.1016/S0962-8924(00)01739-6
  9. 10.1016/S0959-437X(00)00177-5
  10. Fishel B., Amstutz H., Baum M., Carbon J., Clarke L., Mol. Cell. Biol. 8, 754 (1988). / Mol. Cell. Biol. by Fishel B. (1988)
  11. 10.1128/MCB.18.9.5465
  12. 10.1016/0168-9525(90)90302-M
  13. 10.1093/hmg/6.8.1195
  14. 10.1086/302380
  15. 10.1086/302924
  16. 10.1093/emboj/20.8.2087
  17. 10.1101/gr.167601
  18. 10.1016/S0092-8674(00)80491-2
  19. 10.1006/geno.1999.5742
  20. 10.1016/0092-8674(95)90032-2
  21. 10.1093/genetics/150.4.1683
  22. 10.1093/hmg/9.12.1891
  23. 10.1038/ng0497-345
  24. 10.1038/nbt0598-431
  25. K. H. A. Choo The Centromere (Oxford Univ. Press Oxford 1997). (10.1093/oso/9780198577812.001.0001)
  26. 10.1073/pnas.93.16.8512
  27. 10.1073/pnas.95.14.8135
  28. 10.1083/jcb.136.3.501
  29. 10.1007/s004120050376
  30. 10.1007/s004120050427
  31. 10.1093/hmg/9.2.175
  32. 10.1006/excr.1998.4278
  33. 10.1007/BF00328227
  34. D. K. Palmer K. O'Day
  35. 10.1073/pnas.88.9.3734
  36. 10.1083/jcb.127.3.581
  37. 10.1016/S0960-9822(06)00381-2
  38. 10.1007/s004120050388
  39. 10.1038/3024
  40. 10.1016/S0960-9822(06)00382-4
  41. 10.1073/pnas.130189697
  42. The presence of centromeric histones may generate a chromatin structure unique to active centromeres (44 86).
  43. 10.1016/S0092-8674(00)81602-5
  44. 10.1073/pnas.97.2.716
  45. 10.1038/44062
  46. 10.1126/science.288.5474.2215
  47. 10.1093/genetics/157.3.1293
  48. 10.1016/S0168-9525(98)01444-9
  49. 10.1083/jcb.153.6.1199
  50. 10.1083/jcb.153.6.1209
  51. 10.1073/pnas.97.3.1148
  52. 10.1073/pnas.95.3.1136
  53. One example is the kinesinlike protein Cenp-meta in Drosophila (87). Several others localize to regions that surround centromeres including Heterochromatin-associated Protein 1 mammalian CenpB and Topoisomerase II (30).
  54. 10.1101/gad.13.9.1140
  55. M. Winey E. T. O'Toole Nature Cell Biol. 3 E23 (2001). (10.1038/35050663)
  56. 10.1021/bi00406a044
  57. 10.1083/jcb.151.5.1113
  58. 10.1083/jcb.153.1.101
  59. R. T. O'Keefe
  60. 10.1083/jcb.116.5.1095
  61. 10.1007/s004120100132
  62. 10.1101/gad.14.7.783
  63. 10.1093/genetics/131.3.683
  64. 10.1016/0092-8674(94)90075-2
  65. 10.1093/genetics/153.3.1153
  66. 10.1016/S0092-8674(00)80492-4
  67. 10.1093/genetics/150.2.563
  68. 10.1038/35055010
  69. 10.1016/S0092-8674(00)81158-7
  70. 10.1007/s004120050243
  71. 10.1038/371215a0
  72. . 69.   For example different satellites have arisen on homologous chromosomes since the divergence of humans and chimpanzees (67). In Drosophila the enigma is even more severe as completely unrelated satellites are found on homologous chromosomes in closely related species (46). Even the best characterized Drosophila centromere consists primarily of two unrelated pentameric satellite blocks (17).
  73. 10.1016/0959-437X(93)90012-E
  74. 10.1038/38444
  75. 10.1128/MCB.19.9.6130
  76. M. M. Rhoades in Heterosis J. W. Gowen Ed. (Iowa St. College Press Ames IA 1952) pp. 66–80.
  77. 10.1093/genetics/152.4.1605
  78. 10.1007/s003350040003
  79. 10.1002/jcp.1030450509
  80. 10.1093/genetics/27.4.395
  81. 10.1007/s004390000437
  82. 10.1093/genetics/149.1.143
  83. Cid might not be the only protein whose adaptive evolution can alleviate the deleterious effects of satellite drive. Heterochromatic DNA-binding proteins such as HOAP might rapidly evolve in order to occlude satellite DNAs from centromeric status (88 89).
  84. E. S. Buckler 4th et al. Genetics 153 415 (1999). (10.1093/genetics/153.1.415)
  85. The satellite-Cid model for reproductive isolation can be compared with the classical two-locus hypothesis for speciation (90). In that model an ancestral population ( A 1 A 1 B 1 B 1 ) evolves in one population to A 1 A 1 B 2 B 2 and in the other population to A 2 A 2 B 1 B 1 . The alleles A 2 and B 2 are neutral in the background of B 1 and A 1 respectively; however in hybrids ( A 1 A 2 B 1 B 2 ) an epistatic interaction between A 2 and B 2 is deleterious. One problem with this model has been the lack of a plausible mechanism for the deleterious interaction between A 2 and B 2 . In addition neither A 1 A 1 B 2 B 2 nor A 2 A 2 B 1 B 1 would be incompatible with their ancestor A 1 A 1 B 1 B 1 . Our model for satellite-Cid evolution implies an inherently rapid drive process (91 92) together with a molecular mechanism for hybrid incompatibilities. This drive is irreversible in that A 1 A 1 B 1 B 1 would give rise to A 2 A 2 B 2 B 2 and A 3 A 3 B 3 B 3 and so both derived populations become incompatible with their ancestral population.
  86. 10.1093/genetics/147.3.937
  87. In birds sex ratio distortion can result from a competition between the Z and W sex chromosomes for inclusion in the oocyte. Remarkably female birds appear to have the ability to choose between the Z and W at meiosis on the basis of external cues (93).
  88. The rapid evolution of centromeric histones might also have mitotic consequences. For example dicentric chromosomes might appear in hybrids because of the different sequence preferences of their centromeric histones. The resulting breakage and aneuploidy will reduce viability. The effects of X or Z dicentrics will be more severe in XY or ZW than XX or ZZ consistent with the “dominance” theory of Haldane's rule for hybrid inviability (90).
  89. 10.1093/embo-reports/kvd110
  90. 10.1083/jcb.150.1.1a
  91. 10.1091/mbc.12.6.1671
  92. 10.1093/genetics/153.4.1717
  93. 10.1098/rstb.1998.0210
  94. Frank S. A., Evolution 45, 252 (1991). / Evolution by Frank S. A. (1991)
  95. 10.1093/genetics/128.4.841
  96. 10.1016/S0960-9822(99)80303-0
  97. B. Buchwitz L. Moore M. Roth unpublished data.
  98. J. S. Platero K. Ahmed unpublished data.
  99. We thank S. Biggins B. Byers D. Gottschling C. Langley M. Roth P. Talbert and D. Vermaak for helpful discussions and P. Warburton for Fig. 1C. We are supported by the Howard Hughes Medical Institute (S.H.) the American Cancer Society (K.A.) and the Helen Hay Whitney Foundation (H.S.M.).
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:39 a.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 4:12 p.m.)
Indexed 30 minutes ago (Aug. 30, 2025, 12:01 p.m.)
Issued 24 years ago (Aug. 10, 2001)
Published 24 years ago (Aug. 10, 2001)
Published Print 24 years ago (Aug. 10, 2001)
Funders 0

None

@article{Henikoff_2001, title={The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA}, volume={293}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1062939}, DOI={10.1126/science.1062939}, number={5532}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Henikoff, Steven and Ahmad, Kami and Malik, Harmit S.}, year={2001}, month=aug, pages={1098–1102} }