Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

We have characterized the fundamental photoluminescence (PL) properties of individual, isolated indium phosphide (InP) nanowires to define their potential for optoelectronics. Polarization-sensitive measurements reveal a striking anisotropy in the PL intensity recorded parallel and perpendicular to the long axis of a nanowire. The order-of-magnitude polarization anisotropy was quantitatively explained in terms of the large dielectric contrast between these free-standing nanowires and surrounding environment, as opposed to quantum confinement effects. This intrinsic anisotropy was used to create polarization-sensitive nanoscale photodetectors that may prove useful in integrated photonic circuits, optical switches and interconnects, near-field imaging, and high-resolution detectors.

Bibliography

Wang, J., Gudiksen, M. S., Duan, X., Cui, Y., & Lieber, C. M. (2001). Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires. Science, 293(5534), 1455–1457.

Authors 5
  1. Jianfang Wang (first)
  2. Mark S. Gudiksen (additional)
  3. Xiangfeng Duan (additional)
  4. Yi Cui (additional)
  5. Charles M. Lieber (additional)
References 22 Referenced 1,681
  1. Someya T., Akiyama H., Sakaki H., Phys. Rev. Lett. 74, 3664 (1995). (10.1103/PhysRevLett.74.3664) / Phys. Rev. Lett. by Someya T. (1995)
  2. Vouilloz F., et al., Phys. Rev. B 57, 12378 (1998). (10.1103/PhysRevB.57.12378) / Phys. Rev. B by Vouilloz F. (1998)
  3. Akiyama H., Someya T., Sakaki H., Phys. Rev. B 53, R4229 (1996). (10.1103/PhysRevB.53.R4229) / Phys. Rev. B by Akiyama H. (1996)
  4. Ils P., et al., Phys. Rev. B 51, 4272 (1995). (10.1103/PhysRevB.51.4272) / Phys. Rev. B by Ils P. (1995)
  5. Hasen J., et al., Nature 390, 54 (1997). (10.1038/36299) / Nature by Hasen J. (1997)
  6. Duan X., Lieber C. M., Adv. Mater. 12, 298 (2000). (10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y) / Adv. Mater. by Duan X. (2000)
  7. Gudiksen M. S., Lieber C. M., J. Am. Chem. Soc. 122, 8801 (2000). (10.1021/ja002008e) / J. Am. Chem. Soc. by Gudiksen M. S. (2000)
  8. Gudiksen M. S., Wang J., Lieber C. M., J. Phys. Chem. B 105, 4062 (2001). (10.1021/jp010540y) / J. Phys. Chem. B by Gudiksen M. S. (2001)
  9. Excitation light (488 or 514 nm) was focused by an objective (NA = 0.7) to a ∼30-μm diameter spot at ∼1.0 kW/cm 2 on the quartz substrate with nanowires dispersed on it. A λ/2 wave plate was used to change the polarization of excitation light. The resulting PL was collected by the same objective filtered to remove excitation light focused and either imaged or spectrally dispersed onto a liquid nitrogen–cooled CCD. To determine the emission polarization a Glan-Thompson polarizer was placed in front of the spectrometer to detect emission intensities.
  10. Empedocles S. A., Norris D. J., Bawendi M. G., Phys. Rev. Lett. 77, 3873 (1996). (10.1103/PhysRevLett.77.3873) / Phys. Rev. Lett. by Empedocles S. A. (1996)
  11. PL spectra exhibit a diameter-dependent shift in the PL emission energy from the bulk band gap of InP (1.35 eV) for diameters ≤20 nm. Detailed studies show that diameter-dependent spectra collected from nanowires at room temperature and ∼7 K can be explained in terms of radial quantum confinement. Giant polarization anisotropy is observed in nanowires with diameters from 10 to 50 nm at room temperature and 7 K.
  12. M. S. Gudiksen J. Wang C. M. Lieber in preparation.
  13. L. D. Landau E. M. Lifshitz L. P. Pitaevskii Electrodynamics of Continuous Media (Pergamon Oxford 1984) pp. 34–42. (10.1016/B978-0-08-030275-1.50008-4)
  14. 10.1038/35051047
  15. 10.1126/science.291.5504.630
  16. 10.1126/science.291.5505.851
  17. Ura S., Sunagawa H., Suhara T., Nishihara H., J. Lightwave Tech. 6, 1028 (1988). (10.1109/50.4095) / J. Lightwave Tech. by Ura S. (1988)
  18. Chen C. J., Choi K. K., Rokhinson L., Chang W. H., Tsui D. C., Appl. Phys. Lett. 74, 862 (1999). (10.1063/1.123391) / Appl. Phys. Lett. by Chen C. J. (1999)
  19. M. Bass et al. Handbook of Optics (McGraw Hill New York 1995) pp. 17.1–17.29.
  20. These very small devices could prove useful for high-speed detection because the response times of semiconductor photodetectors can be limited by their resistance-capacitance (RC) time constants (19). On the basis of improved nanowire–metal contacts (10 kilohm) and intrinsically small capacitances (∼10 −17 F) (21) RC time constants on the order of 100 fs can be realized. By decreasing the electrode separation to ensure direct collection of photogenerated carriers detection speeds on the order of 100 fs or less may be realized with these nanoscale detectors.
  21. 10.1021/jp0009305
  22. We thank L. Lauhon and H. Park for helpful discussions. M.S.G. thanks the NSF for predoctoral fellowship support. C.M.L. acknowledges support of this work by the Office of Naval Research and Defense Advanced Projects Research Agency.
Dates
Type When
Created 23 years ago (July 27, 2002, 5:53 a.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 5:11 p.m.)
Indexed 3 days, 21 hours ago (Aug. 21, 2025, 2:17 p.m.)
Issued 24 years ago (Aug. 24, 2001)
Published 24 years ago (Aug. 24, 2001)
Published Print 24 years ago (Aug. 24, 2001)
Funders 0

None

@article{Wang_2001, title={Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires}, volume={293}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1062340}, DOI={10.1126/science.1062340}, number={5534}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Wang, Jianfang and Gudiksen, Mark S. and Duan, Xiangfeng and Cui, Yi and Lieber, Charles M.}, year={2001}, month=aug, pages={1455–1457} }