Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

A method of constructing <30-nanometer structures in close proximity with precise spacings is presented that uses the step-by-step application of organic molecules and metal ions as size-controlled resists on predetermined patterns, such as those formed by electron-beam lithography. The organic molecules serve as a ruler for scaling down a larger “parent” structure. After metal deposition and lift-off of the organic multilayer resist, an isolated smaller structure remains on the surface. This approach is used to form thin parallel wires (15 to 70 nanometers in width and 1 micrometer long) of controlled thickness and spacing. The structures obtained were imaged with field emission scanning electron microscopy. A variety of nanostructures could be scaled down, including structures with hollow patterns.

Bibliography

Hatzor, A., & Weiss, P. S. (2001). Molecular Rulers for Scaling Down Nanostructures. Science, 291(5506), 1019–1020.

Authors 2
  1. A. Hatzor (first)
  2. P. S. Weiss (additional)
References 23 Referenced 1,615
  1. P. Rai-Choudhury Ed. SPIE Handbook of Microlithography Micromachining and Microfabrication (SPIE Bellingham WA 1997) vol. 1 pp. 139–250. (10.1117/3.2265070)
  2. Natelson D., Willet R. L., West K. W., Pfeiffer L. N., Appl. Phys. Lett. 77, 1991 (2000). (10.1063/1.1312256) / Appl. Phys. Lett. by Natelson D. (2000)
  3. Chou S. Y., Krauss P. R., Zhang W., Guo L., Zhuang L., J. Vac. Sci. Technol. B 15, 2897 (1997). (10.1116/1.589752) / J. Vac. Sci. Technol. B by Chou S. Y. (1997)
  4. Sugimura H., Nakagiri N., J. Am. Chem. Soc. 119, 9226 (1997). (10.1021/ja971027u) / J. Am. Chem. Soc. by Sugimura H. (1997)
  5. Reed M. A., et al., Appl. Phys. Lett. 75, 624 (1999). (10.1063/1.124461) / Appl. Phys. Lett. by Reed M. A. (1999)
  6. 10.1126/science.286.5439.523
  7. 10.1038/29954
  8. 10.1126/science.277.5334.1971
  9. Ebbesen T. W., et al., Nature 382, 54 (1996). (10.1038/382054a0) / Nature by Ebbesen T. W. (1996)
  10. Martin B. R., et al., Adv. Mater. 11, 1021 (1999). (10.1002/(SICI)1521-4095(199908)11:12<1021::AID-ADMA1021>3.0.CO;2-S) / Adv. Mater. by Martin B. R. (1999)
  11. 10.1126/science.273.5277.933
  12. 10.1038/35826
  13. Wang Y., Chou S. Y., J. Vac. Sci. Technol. B 10, 2962 (1992). (10.1116/1.585952) / J. Vac. Sci. Technol. B by Wang Y. (1992)
  14. Clark S. L., Hammond P. T., Adv. Mater. 10, 1515 (1998). (10.1002/(SICI)1521-4095(199812)10:18<1515::AID-ADMA1515>3.0.CO;2-E) / Adv. Mater. by Clark S. L. (1998)
  15. Evans S. D., Ulman A., Goppert-Berarducci K. E., Gerenser J. L., J. Am. Chem. Soc. 113, 5866 (1991). (10.1021/ja00015a053) / J. Am. Chem. Soc. by Evans S. D. (1991)
  16. The XPS data are available as Web tables 1 and 2 and Web fig. 1 available at Science Online www.sciencemag.org/cgi/content/full/291/5506/1019/DC1.
  17. T. van der Boom-Moav personal communication.
  18. J. I. Goldstein et al. Scanning Electron Microscopy and X-Ray Microanalysis (Plenum New York 1981) pp. 461–494. (10.1007/978-1-4613-3273-2_10)
  19. As shown in the bottom row of Table 1 the gap in this 20-layer sample is smaller than expected (∼32 nm instead of an expected ∼40 nm). This difference might be due to changes in packing of the layers after several adsorptions or to a tilt of the structure.
  20. Trevor D. J., Chidsey C. E. D., J. Vac. Sci. Technol. B 9, 964 (1991). (10.1116/1.585504) / J. Vac. Sci. Technol. B by Trevor D. J. (1991)
  21. A. Hatzor P. S. Weiss in preparation.
  22. In some samples after the lift-off process the gap was wider than expected from the multilayer borderline. This phenomenon might be the result of annealing of the newly formed metal wire into a more stable thinner form caused by the lift-off process. These samples were excluded from the calculation.
  23. We thank E. Basgall T. Kuzma J. Lonjin and A. Mieckowski for technical assistance and R. Hengstebeck for XPS measurements. We also thank T. Mallouk and R. Davis for helpful discussions and D. Allara for the use of his ellipsometer. Supported by the Army Research Office the Defense Advanced Research Projects Agency the National Science Foundation and the Office of Naval Research.
Dates
Type When
Created 23 years ago (July 27, 2002, 5:47 a.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 6:02 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 6, 2025, 8:21 a.m.)
Issued 24 years, 6 months ago (Feb. 9, 2001)
Published 24 years, 6 months ago (Feb. 9, 2001)
Published Print 24 years, 6 months ago (Feb. 9, 2001)
Funders 0

None

@article{Hatzor_2001, title={Molecular Rulers for Scaling Down Nanostructures}, volume={291}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1057553}, DOI={10.1126/science.1057553}, number={5506}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Hatzor, A. and Weiss, P. S.}, year={2001}, month=feb, pages={1019–1020} }