Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

We realize Mott transition from interlayer exciton to charge-separated electron/hole plasmas in 2D WSe 2 /MoSe 2 heterobilayers.

Authors 10
  1. Jue Wang (first)
  2. Jenny Ardelean (additional)
  3. Yusong Bai (additional)
  4. Alexander Steinhoff (additional)
  5. Matthias Florian (additional)
  6. Frank Jahnke (additional)
  7. Xiaodong Xu (additional)
  8. Mackillo Kira (additional)
  9. James Hone (additional)
  10. X.-Y. Zhu (additional)
References 49 Referenced 105
  1. 10.1038/nature16175
  2. 10.1038/nphys3580
  3. 10.1126/science.aab2277
  4. 10.1073/pnas.1716781115
  5. 10.1038/nnano.2014.167
  6. 10.1021/acs.nanolett.7b00748
  7. 10.1038/ncomms7242
  8. 10.1038/s41567-018-0123-y
  9. 10.1126/sciadv.1700518
  10. 10.1038/s41565-018-0193-0
  11. M. Stern, V. Garmider, V. Umansky, I. Bar-Joseph, Mott transition of excitons in coupled quantum wells. Phys. Rev. Lett. 100, 256402 (2008). (10.1103/PhysRevLett.100.256402) / Phys. Rev. Lett. / Mott transition of excitons in coupled quantum wells by Stern M. (2008)
  12. G. Kiršanskė, P. Tighineanu, R. S. Daveau, J. Miguel-Sánchez, P. Lodahl, S. Stobbe, Observation of the exciton Mott transition in the photoluminescence of coupled quantum wells. Phys. Rev. B 94, 155438 (2016). (10.1103/PhysRevB.94.155438) / Phys. Rev. B / Observation of the exciton Mott transition in the photoluminescence of coupled quantum wells by Kiršanskė G. (2016)
  13. 10.1038/nphoton.2015.104
  14. R. Gillen, J. Maultzsch, Interlayer excitons in MoSe2/WSe2 heterostructures from first principles. Phys. Rev. B 97, 165306 (2018). (10.1103/PhysRevB.97.165306) / Phys. Rev. B / Interlayer excitons in MoSe2/WSe2 heterostructures from first principles by Gillen R. (2018)
  15. 10.1103/PhysRevLett.115.187002
  16. D. Edelberg D. Edelberg D. Rhodes A. Kerelsky B. Kim J. Wang A. Zangiabadi C. Kim A. Abhinandan J. Ardelean M. Scully D. Scullion L. Embon I. Zhang R. Zu E. J. G. Santos L. Balicas C. Marianetti K. Barmak X.-Y. Zhu J. Hone A. N. Pasupathy Hundredfold enhancement of light emission via defect control in monolayer transition-metal dichalcogenides. arXiv:1805.00127 (2018).
  17. 10.1103/PhysRevB.90.205422
  18. 10.1038/ncomms2498
  19. 10.1038/s41467-018-05917-8
  20. 10.1038/s41467-018-05632-4
  21. 10.1038/s41467-018-05558-x
  22. 10.1126/science.aac7820
  23. 10.1126/science.1243409
  24. R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, S. W. Koch, Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells. Phys. Rev. Lett. 104, 247401 (2010). (10.1103/PhysRevLett.104.247401) / Phys. Rev. Lett. / Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells by Smith R. P. (2010)
  25. 10.1103/PhysRevLett.92.067402
  26. 10.1021/acs.nanolett.7b01304
  27. 10.1103/PhysRevLett.101.196405
  28. J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, X. Xu, Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 17, 638–643 (2017). (10.1021/acs.nanolett.6b03398) / Nano Lett. / Interlayer exciton optoelectronics in a 2D heterostructure p-n junction by Ross J. S. (2017)
  29. L. Meckbach, T. Stroucken, S. W. Koch, Giant excitation induced bandgap renormalization in TMDC monolayers. Appl. Phys. Lett. 112, 061104 (2018). (10.1063/1.5017069) / Appl. Phys. Lett. / Giant excitation induced bandgap renormalization in TMDC monolayers by Meckbach L. (2018)
  30. H. Haug S. W. Koch Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific 2009). (10.1142/7184)
  31. A. Steinhoff, M. Rosner, F. Jahnke, T. O. Wehling, C. Gies, Influence of excited carriers on the optical and electronic properties of MoS2. Nano Lett. 14, 3743–3748 (2014). (10.1021/nl500595u) / Nano Lett. / Influence of excited carriers on the optical and electronic properties of MoS2 by Steinhoff A. (2014)
  32. A. Kormányos G. Burkard M. Gmitra J. Fabian V. Zólyomi N. D Drummond V. Fal’ko k·p theory for two-dimensional transition metal dichalcogenide semiconductors. arXiv:1410.6666 (2015).
  33. M. Florian, M. Hartmann, A. Steinhoff, J. Klein, A. W. Holleitner, J. J. Finley, T. O. Wehling, M. Kaniber, C. Gies, The dielectric impact of layer distances on exciton and trion binding energies in van der Waals heterostructures. Nano Lett. 18, 2725–2732 (2018). (10.1021/acs.nanolett.8b00840) / Nano Lett. / The dielectric impact of layer distances on exciton and trion binding energies in van der Waals heterostructures by Florian M. (2018)
  34. 10.1103/PhysRevB.92.205418
  35. 10.1103/PhysRev.146.543
  36. 10.1103/PhysRevLett.108.196802
  37. E. J. Sie, E. J. Sie, A. Steinhoff, C. Gies, C. H. Lui, Q. Ma, M. Rösner, G. Schönhoff, F. Jahnke, T. O. Wehling, Y.-H. Lee, J. Kong, P. Jarillo-Herrero, N. Gedik, Observation of exciton redshift-blueshift crossover in monolayer WS2. Nano Lett. 17, 4210–4216 (2017). (10.1021/acs.nanolett.7b01034) / Nano Lett. / Observation of exciton redshift-blueshift crossover in monolayer WS2 by Sie E. J. (2017)
  38. A. J. Goodman, A. P. Willard, W. A. Tisdale, Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS2. Phys. Rev. B 96, 121404 (2017). (10.1103/PhysRevB.96.121404) / Phys. Rev. B / Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS2 by Goodman A. J. (2017)
  39. F. Liu, M. Ziffer, K. R. Hansen, J. Wang, X. Zhu, Direct determination of band gap renormalization in photo-excited monolayer MoS2. Phys. Rev. Lett. 122, 246803 (2019). (10.1103/PhysRevLett.122.246803) / Phys. Rev. Lett. / Direct determination of band gap renormalization in photo-excited monolayer MoS2 by Liu F. (2019)
  40. 10.1021/nl401561r
  41. 10.1021/nn5044542
  42. 10.1126/science.1244358
  43. 10.1038/s41699-018-0050-x
  44. M. Kira, F. Jahnke, H. S. W. Koch, Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. Quantum Electron. 23, 189–279 (1999). (10.1016/S0079-6727(99)00008-7) / Prog. Quantum Electron. / Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures by Kira M. (1999)
  45. D. E. Aspnes, J. B. Theeten, Spectroscopic analysis of the interface between Si and its thermally grown oxide. J. Electrochem. Soc. 127, 1359–1365 (1980). (10.1149/1.2129899) / J. Electrochem. Soc. / Spectroscopic analysis of the interface between Si and its thermally grown oxide by Aspnes D. E. (1980)
  46. 10.1364/JOSA.55.001205
  47. A. Segura, L. Artús, R. Cuscó, T. Taniguchi, G. Cassabois, B. Gil, Natural optical anisotropy of h-BN: Highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range. Phys. Rev. Mater. 2, 024001 (2018). (10.1103/PhysRevMaterials.2.024001) / Phys. Rev. Mater. / Natural optical anisotropy of h-BN: Highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range by Segura A. (2018)
  48. G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, B. Urbaszek, Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015). (10.1103/PhysRevLett.114.097403) / Phys. Rev. Lett. / Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances by Wang G. (2015)
  49. G. Wang, I. C. Gerber, L. Bouet, D. Lagarde, A. Balocchi, M. Vidal, T. Amand, X. Marie, B. Urbaszek, Exciton states in monolayer MoSe2: Impact on interband transitions. 2D Mater. 2, 045005 (2015). (10.1088/2053-1583/2/4/045005) / 2D Mater. / Exciton states in monolayer MoSe2: Impact on interband transitions by Wang G. (2015)
Dates
Type When
Created 5 years, 11 months ago (Sept. 13, 2019, 7:19 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 11:47 a.m.)
Indexed 4 weeks ago (Aug. 6, 2025, 8:12 a.m.)
Issued 5 years, 11 months ago (Sept. 6, 2019)
Published 5 years, 11 months ago (Sept. 6, 2019)
Published Print 5 years, 11 months ago (Sept. 6, 2019)
Funders 3
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-1608437
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-142063
  3. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-1809680

@article{Wang_2019, title={Optical generation of high carrier densities in 2D semiconductor heterobilayers}, volume={5}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.aax0145}, DOI={10.1126/sciadv.aax0145}, number={9}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Wang, Jue and Ardelean, Jenny and Bai, Yusong and Steinhoff, Alexander and Florian, Matthias and Jahnke, Frank and Xu, Xiaodong and Kira, Mackillo and Hone, James and Zhu, X.-Y.}, year={2019}, month=sep }