Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

Theoretical study reveals nonlinear photocurrent switching upon ferroic transition without breaking time-reversal symmetry.

Bibliography

Wang, H., & Qian, X. (2019). Ferroicity-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials. Science Advances, 5(8).

Authors 2
  1. Hua Wang (first)
  2. Xiaofeng Qian (additional)
References 41 Referenced 85
  1. J. Weiner F. Nunes Light-Matter Interaction: Physics and Engineering at the Nanoscale (OUP 2012). (10.1093/acprof:oso/9780198567653.001.0001)
  2. C. Lienau, M. A. Noginov, M. Lončar, Light–matter interactions at the nanoscale. J. Opt. 16, 110201 (2014). (10.1088/2040-8978/16/11/110201) / J. Opt. / Light–matter interactions at the nanoscale by Lienau C. (2014)
  3. J. Weiner P.-T. Ho Light-Matter Interaction Fundamentals and Applications (John Wiley & Sons 2008) vol. 1.
  4. R. Thomson C. Leburn D. Reid Ultrafast Nonlinear Optics (Springer 2013). (10.1007/978-3-319-00017-6)
  5. 10.1146/annurev.anchem.1.031207.112754
  6. 10.1103/PhysRevA.60.R773
  7. 10.1103/RevModPhys.74.145
  8. M. F. Yanik, S. Fan, M. Soljačić, J. D. Joannopoulos, All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 28, 2506–2508 (2003). (10.1364/OL.28.002506) / Opt. Lett. / All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry by Yanik M. F. (2003)
  9. 10.1038/nature02921
  10. 10.1038/nphoton.2015.182
  11. Y.-R. Shen The Principles of Nonlinear Optics (Wiley-Interscience 1984).
  12. R. W. Boyd Nonlinear Optics (Elsevier Inc. ed. 3 2008).
  13. 10.1103/PhysRevB.79.081406
  14. 10.1038/nphys3969
  15. 10.1126/sciadv.1501524
  16. 10.1038/s41563-019-0297-4
  17. 10.1038/ncomms15995
  18. 10.1038/nphys4146
  19. 10.1038/lsa.2016.131
  20. H. Wang, X. Qian, Giant optical second harmonic generation in two-dimensional multiferroics. Nano Lett. 17, 5027–5034 (2017). (10.1021/acs.nanolett.7b02268) / Nano Lett. / Giant optical second harmonic generation in two-dimensional multiferroics by Wang H. (2017)
  21. T. Rangel, B. M. Fregoso, B. S. Mendoza, T. Morimoto, J. E. Moore, J. B. Neaton, Large bulk photovoltaic effect and spontaneous polarization of single-layer monochalcogenides. Phys. Rev. Lett. 119, 067402 (2017). (10.1103/PhysRevLett.119.067402) / Phys. Rev. Lett. / Large bulk photovoltaic effect and spontaneous polarization of single-layer monochalcogenides by Rangel T. (2017)
  22. 10.1103/PhysRevB.23.5590
  23. 10.1103/PhysRevLett.109.116601
  24. P. J. Sturman V. M. Fridkin Photovoltaic and Photo-refractive Effects in Noncentrosymmetric Materials (CRC Press 1992) vol. 8.
  25. 10.1103/PhysRevB.61.5337
  26. 10.1103/PhysRevLett.105.026805
  27. 10.1103/PhysRevLett.115.216806
  28. 10.1126/science.aad8609
  29. H. Wang, X. Qian, Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 4, 015042 (2017). (10.1088/2053-1583/4/1/015042) / 2D Mater. / Two-dimensional multiferroics in monolayer group IV monochalcogenides by Wang H. (2017)
  30. F. Nastos, J. Sipe, Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap. Phys. Rev. B 74, 035201 (2006). (10.1103/PhysRevB.74.035201) / Phys. Rev. B / Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap by Nastos F. (2006)
  31. M. S. Dresselhaus G. Dresselhaus A. Jorio Group Theory: Application to the Physics of Condensed Matter (Springer Science & Business Media 2007).
  32. C. Wang, X. Liu, L. Kang, B.-L. Gu, Y. Xu, W. Duan, First-principles calculation of nonlinear optical responses by Wannier interpolation. Phys. Rev. B 96, 115147 (2017). (10.1103/PhysRevB.96.115147) / Phys. Rev. B / First-principles calculation of nonlinear optical responses by Wannier interpolation by Wang C. (2017)
  33. B. M. Fregoso, T. Morimoto, J. E. Moore, Quantitative relationship between polarization differences and the zone-averaged shift photocurrent. Phys. Rev. B 96, 075421 (2017). (10.1103/PhysRevB.96.075421) / Phys. Rev. B / Quantitative relationship between polarization differences and the zone-averaged shift photocurrent by Fregoso B. M. (2017)
  34. O. Madelung Semiconductors—Basic Data (Springer Science & Business Media 2012).
  35. N. Laman, A. Shkrebtii, J. Sipe, H. Van Driel, Quantum interference control of currents in CdSe with a single optical beam. Appl. Phys. Lett. 75, 2581–2583 (1999). (10.1063/1.125084) / Appl. Phys. Lett. / Quantum interference control of currents in CdSe with a single optical beam by Laman N. (1999)
  36. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964). (10.1103/PhysRev.136.B864) / Phys. Rev. B / Inhomogeneous electron gas by Hohenberg P. (1964)
  37. 10.1103/PhysRev.140.A1133
  38. 10.1103/PhysRevB.54.11169
  39. 10.1016/0927-0256(96)00008-0
  40. 10.1103/PhysRevB.50.17953
  41. 10.1103/PhysRevLett.77.3865
Dates
Type When
Created 6 years ago (Aug. 16, 2019, 7:14 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 12:07 p.m.)
Indexed 1 week, 2 days ago (Aug. 12, 2025, 5:37 p.m.)
Issued 6 years ago (Aug. 2, 2019)
Published 6 years ago (Aug. 2, 2019)
Published Print 6 years ago (Aug. 2, 2019)
Funders 1
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-1753054

@article{Wang_2019, title={Ferroicity-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials}, volume={5}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.aav9743}, DOI={10.1126/sciadv.aav9743}, number={8}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Wang, Hua and Qian, Xiaofeng}, year={2019}, month=aug }