Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

This paper reports the first demonstration of current-induced magnetization switching using an ordinary insulator.

Bibliography

An, H., Ohno, T., Kanno, Y., Kageyama, Y., Monnai, Y., Maki, H., Shi, J., & Ando, K. (2018). Current-induced magnetization switching using an electrically insulating spin-torque generator. Science Advances, 4(2).

Authors 8
  1. Hongyu An (first)
  2. Takeo Ohno (additional)
  3. Yusuke Kanno (additional)
  4. Yuito Kageyama (additional)
  5. Yasuaki Monnai (additional)
  6. Hideyuki Maki (additional)
  7. Ji Shi (additional)
  8. Kazuya Ando (additional)
References 44 Referenced 70
  1. 10.1103/RevModPhys.87.1213
  2. 10.1038/nmat3279
  3. 10.1038/nmat4360
  4. A. Soumyanarayanan, N. Reyren, A. Fert, C. Panagopoulos, Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016). (10.1038/nature19820) / Nature / Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces by Soumyanarayanan A. (2016)
  5. 10.1038/nature10309
  6. 10.1038/nmat2613
  7. 10.1126/science.1218197
  8. 10.1038/nmat3522
  9. 10.1038/nnano.2014.94
  10. 10.1038/nmat3973
  11. X. Wang, C. O. Pauyac, A. Manchon, Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure. Phys. Rev. B 89, 054405 (2014). (10.1103/PhysRevB.89.054405) / Phys. Rev. B / Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure by Wang X. (2014)
  12. K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013). (10.1038/nnano.2013.145) / Nat. Nanotechnol. / Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures by Garello K. (2013)
  13. 10.1038/ncomms2709
  14. Y. Fan, X. Kou, P. Upadhyaya, Q. Shao, L. Pan, M. Lang, X. Che, J. Tang, M. Montazeri, K. Murata, L.-T. Chang, M. Akyol, G. Yu, T. Nie, K. L. Wong, J. Liu, Y. Wang, Y. Tserkovnyak, K. L. Wang, Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotechnol. 11, 352–359 (2016). (10.1038/nnano.2015.294) / Nat. Nanotechnol. / Electric-field control of spin–orbit torque in a magnetically doped topological insulator by Fan Y. (2016)
  15. 10.1038/ncomms10644
  16. P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, M. D. Stiles, Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling. Phys. Rev. B 87, 174411 (2013). (10.1103/PhysRevB.87.174411) / Phys. Rev. B / Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling by Haney P. M. (2013)
  17. D. A. Pesin, A. H. MacDonald, Quantum kinetic theory of current-induced torques in Rashba ferromagnets. Phys. Rev. B 86, 014416 (2012). (10.1103/PhysRevB.86.014416) / Phys. Rev. B / Quantum kinetic theory of current-induced torques in Rashba ferromagnets by Pesin D. A. (2012)
  18. J. Finley, L. Liu, Spin-orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys. Phys. Rev. Appl. 6, 054001 (2016). (10.1103/PhysRevApplied.6.054001) / Phys. Rev. Appl. / Spin-orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys by Finley J. (2016)
  19. 10.1103/PhysRevLett.119.077702
  20. Y. Abe, M. Kawamura, K. Sasaki, Effects of oxygen gettering and target mode change in the formation process of reactively sputtered Pt oxide thin films. J. Vac. Sci. Technol. A 18, 2608–2612 (2000). (10.1116/1.1288192) / J. Vac. Sci. Technol. A / Effects of oxygen gettering and target mode change in the formation process of reactively sputtered Pt oxide thin films by Abe Y. (2000)
  21. M. T. Johnson, J. J. de Vries, N. W. E. McGee, J. aan de Stegge, F. J. A. den Broeder, Orientational dependence of the interface magnetic anisotropy in epitaxial Ni/Co/Ni sandwiches. Phys. Rev. Lett. 69, 3575–3578 (1992). (10.1103/PhysRevLett.69.3575) / Phys. Rev. Lett. / Orientational dependence of the interface magnetic anisotropy in epitaxial Ni/Co/Ni sandwiches by Johnson M. T. (1992)
  22. P. Hansen, C. Clausen, G. Much, M. Rosenkranz, K. Witter, Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co. J. Appl. Phys. 66, 756–767 (1989). (10.1063/1.343551) / J. Appl. Phys. / Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co by Hansen P. (1989)
  23. M. Akyol, J. G. Alzate, G. Yu, P. Upadhyaya, K. L. Wong, A. Ekicibil, P. K. Amiri, K. L. Wang, Effect of the oxide layer on current-induced spin-orbit torques in Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures. Appl. Phys. Lett. 106, 032406 (2015). (10.1063/1.4906352) / Appl. Phys. Lett. / Effect of the oxide layer on current-induced spin-orbit torques in Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures by Akyol M. (2015)
  24. 10.1103/PhysRevB.94.140414
  25. 10.1103/PhysRevLett.106.036601
  26. 10.1038/nphys3304
  27. 10.1103/PhysRevB.92.064426
  28. K. Kondou, H. Sukegawa, S. Kasai, S. Mitani, Y. Niimi, Y. Otani, Influence of inverse spin Hall effect in spin-torque ferromagnetic resonance measurements. Appl. Phys. Express 9, 023002 (2016). (10.7567/APEX.9.023002) / Appl. Phys. Express / Influence of inverse spin Hall effect in spin-torque ferromagnetic resonance measurements by Kondou K. (2016)
  29. 10.1103/PhysRevLett.88.117601
  30. Y. Niimi, Y. Otani, Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: A review. Rep. Prog. Phys. 78, 124501 (2015). (10.1088/0034-4885/78/12/124501) / Rep. Prog. Phys. / Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: A review by Niimi Y. (2015)
  31. L. Wang, R. J. H. Wesselink, Y. Liu, Z. Yuan, K. Xia, P. J. Kelly, Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016). (10.1103/PhysRevLett.116.196602) / Phys. Rev. Lett. / Giant room temperature interface spin Hall and inverse spin Hall effects by Wang L. (2016)
  32. V. P. Amin, M. D. Stiles, Spin transport at interfaces with spin-orbit coupling: Phenomenology. Phys. Rev. B 94, 104420 (2016). (10.1103/PhysRevB.94.104420) / Phys. Rev. B / Spin transport at interfaces with spin-orbit coupling: Phenomenology by Amin V. P. (2016)
  33. H. Kurebayashi, J. Sinova, D. Fang, A. C. Irvine, T. D. Skinner, J. Wunderlich, V. Novák, R. P. Campion, B. L. Gallagher, E. K. Vehstedt, L. P. Zârbo, K. Výborný, A. J. Ferguson, T. Jungwirth, An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotechnol. 9, 211–217 (2014). (10.1038/nnano.2014.15) / Nat. Nanotechnol. / An antidamping spin–orbit torque originating from the Berry curvature by Kurebayashi H. (2014)
  34. 10.1038/ncomms3944
  35. 10.1038/nphys3833
  36. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009). (10.1002/adma.200900375) / Adv. Mater. / Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges by Waser R. (2009)
  37. 10.1038/nnano.2012.240
  38. 10.1038/nmat4134
  39. 10.1038/nnano.2008.160
  40. J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart, R. S. Williams, A family of electronically reconfigurable nanodevices. Adv. Mater. 21, 3754–3758 (2009). (10.1002/adma.200900822) / Adv. Mater. / A family of electronically reconfigurable nanodevices by Yang J. J. (2009)
  41. M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x/TaO2–x bilayer structures. Nat. Mater. 10, 625–630 (2011). (10.1038/nmat3070) / Nat. Mater. / A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x /TaO2–x bilayer structures by Lee M.-J. (2011)
  42. J. S. Lee, S. Lee, T. W. Noh, Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2, 031303 (2015). (10.1063/1.4929512) / Appl. Phys. Rev. / Resistive switching phenomena: A review of statistical physics approaches by Lee J. S. (2015)
  43. S. Panda, D. J. Economou, L. Chen, Anisotropic etching of polymer films by high energy (~100s of eV) oxygen atom neutral beams. J. Vac. Sci. Technol. A 19, 398–404 (2001). (10.1116/1.1344909) / J. Vac. Sci. Technol. A / Anisotropic etching of polymer films by high energy (~100s of eV) oxygen atom neutral beams by Panda S. (2001)
  44. T. Ohno, S. Samukawa, Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation. Appl. Phys. Lett. 106, 173110 (2015). (10.1063/1.4919724) / Appl. Phys. Lett. / Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation by Ohno T. (2015)
Dates
Type When
Created 7 years, 6 months ago (Feb. 23, 2018, 8:35 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 1:52 p.m.)
Indexed 21 hours, 35 minutes ago (Aug. 23, 2025, 9:16 p.m.)
Issued 7 years, 6 months ago (Feb. 2, 2018)
Published 7 years, 6 months ago (Feb. 2, 2018)
Published Print 7 years, 6 months ago (Feb. 2, 2018)
Funders 9
  1. Japan Society for the Promotion of Science 10.13039/501100001691

    Region: Asia

    gov (National government)

    Labels6
    1. KAKENHI
    2. 日本学術振興会
    3. Gakushin
    4. JSPS KAKEN
    5. JSPS Grants-in-Aid for Scientific Research
    6. JSPS
    Awards1
    1. 26220604, 26103004, 17F17066
  2. Japan Society for the Promotion of Science 10.13039/501100001691

    Region: Asia

    gov (National government)

    Labels6
    1. KAKENHI
    2. 日本学術振興会
    3. Gakushin
    4. JSPS KAKEN
    5. JSPS Grants-in-Aid for Scientific Research
    6. JSPS
    Awards1
    1. P17066
  3. Japan Science and Technology Agency 10.13039/501100002241

    Region: Asia

    gov (National government)

    Labels7
    1. SCIENCE AND TECHNOLOGY AGENCY OF JAPAN
    2. 国立研究開発法人科学技術振興機構
    3. 国立研究開発法人科学技術振興機構 japan science and technology agency
    4. Japan Science and Technology Agency (JST)
    5. かがくぎじゅつしんこうきこう
    6. 科学技術振興機構
    7. JST
    Awards1
    1. 13415036
  4. Japan Science and Technology Agency 10.13039/501100002241

    Region: Asia

    gov (National government)

    Labels7
    1. SCIENCE AND TECHNOLOGY AGENCY OF JAPAN
    2. 国立研究開発法人科学技術振興機構
    3. 国立研究開発法人科学技術振興機構 japan science and technology agency
    4. Japan Science and Technology Agency (JST)
    5. かがくぎじゅつしんこうきこう
    6. 科学技術振興機構
    7. JST
    Awards1
    1. 13415036
  5. Mizuho Foundation for the Promotion of Sciences
  6. PRESTO-JST
    Awards1
    1. JPMJPR1323
  7. PRESTO-JST
    Awards1
    1. JPMJPR1325
  8. JSPS Core-to-Core Program
  9. Spintronics Research Network of Japan

@article{An_2018, title={Current-induced magnetization switching using an electrically insulating spin-torque generator}, volume={4}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.aar2250}, DOI={10.1126/sciadv.aar2250}, number={2}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={An, Hongyu and Ohno, Takeo and Kanno, Yusuke and Kageyama, Yuito and Monnai, Yasuaki and Maki, Hideyuki and Shi, Ji and Ando, Kazuya}, year={2018}, month=feb }