Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

Moiré pattern realizes programmable array of excitonic quantum emitters and exciton lattice with strong spin-orbit coupling.

Bibliography

Yu, H., Liu, G.-B., Tang, J., Xu, X., & Yao, W. (2017). Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Science Advances, 3(11).

Authors 5
  1. Hongyi Yu (first)
  2. Gui-Bin Liu (additional)
  3. Jianju Tang (additional)
  4. Xiaodong Xu (additional)
  5. Wang Yao (additional)
References 56 Referenced 518
  1. M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, V. Pellegrini, Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nanotechnol. 8, 625–633 (2013). (10.1038/nnano.2013.161) / Nat. Nanotechnol. / Artificial honeycomb lattices for electrons, atoms and photons by Polini M. (2013)
  2. S. Zhang W. S. Cole A. Paramekanti N. Trivedi in Annual Review of Cold Atoms and Molecules K. W. Madison K. Bongs L. D. Carr A. M. Rey H. Zhai Eds. (World Scientific 2015) vol. 3 chap. 3.
  3. 10.1126/science.aaf6689
  4. 10.1103/RevModPhys.83.1057
  5. 10.1103/RevModPhys.82.3045
  6. 10.1103/PhysRevB.83.205101
  7. 10.1038/nature12187
  8. 10.1038/nature12186
  9. 10.1126/science.1237240
  10. 10.1126/science.1254966
  11. 10.1103/PhysRevLett.118.147401
  12. 10.1038/nphys3968
  13. 10.1038/nmat4091
  14. 10.1021/nn505736z
  15. 10.1073/pnas.1405435111
  16. 10.1038/ncomms7242
  17. 10.1126/science.aac7820
  18. 10.1038/ncomms8311
  19. 10.1038/ncomms5555
  20. 10.1038/nnano.2014.150
  21. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, X. Duan, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014). (10.1021/nl502075n) / Nano Lett. / Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes by Cheng R. (2014)
  22. 10.1038/nnano.2014.167
  23. 10.1021/nl501962c
  24. 10.1038/ncomms5966
  25. A. M. van der Zande, J. Kunstmann, A. Chernikov, D. A. Chenet, Y. You, X. Zhang, P. Y. Huang, T. C. Berkelbach, L. Wang, F. Zhang, M. S. Hybertsen, D. A. Muller, D. R. Reichman, T. F. Heinz, J. C. Hone, Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014). (10.1021/nl501077m) / Nano Lett. / Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist by van der Zande A. M. (2014)
  26. 10.1126/sciadv.1601459
  27. M. Gao, Y. Pan, C. Zhang, H. Hu, R. Yang, H. Lu, J. Cai, S. Du, F. Liu, H.-J. Gao, Tunable interfacial properties of epitaxial graphene on metal substrates. Appl. Phys. Lett. 96, 053109 (2010). (10.1063/1.3309671) / Appl. Phys. Lett. / Tunable interfacial properties of epitaxial graphene on metal substrates by Gao M. (2010)
  28. 10.1103/PhysRevLett.115.187002
  29. 10.1039/C4CS00301B
  30. 10.1038/nnano.2015.60
  31. 10.1038/nnano.2015.75
  32. 10.1038/nnano.2015.67
  33. 10.1038/ncomms13409
  34. 10.1038/ncomms15093
  35. J. Ibañez-Azpiroz, A. Eiguren, A. Bergara, G. Pettini, M. Modugno, Tight-binding models for ultracold atoms in honeycomb optical lattices. Phys. Rev. A 87, 011602(R) (2013). (10.1103/PhysRevA.87.011602) / Phys. Rev. A / Tight-binding models for ultracold atoms in honeycomb optical lattices by Ibañez-Azpiroz J. (2013)
  36. S. Ryu, Y. Hatsugai, Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002). (10.1103/PhysRevLett.89.077002) / Phys. Rev. Lett. / Topological origin of zero-energy edge states in particle-hole symmetric systems by Ryu S. (2002)
  37. 10.1103/PhysRevLett.102.096801
  38. A. Lamas-Linares, J. C. Howell, D. Bouwmeester, Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001). (10.1038/35091014) / Nature / Stimulated emission of polarization-entangled photons by Lamas-Linares A. (2001)
  39. 10.1103/PhysRevLett.119.023603
  40. 10.1103/PhysRev.93.99
  41. K.-D. Park T. Jiang G. Clark X. Xu M. B. Raschke Radiative control of dark excitons at room temperature by nano-optical antenna-tip induced Purcell effect. http://arxiv.org/abs/1706.09085 (2017). (10.1038/s41565-017-0003-0)
  42. 10.1103/PhysRevB.54.11169
  43. 10.1103/PhysRevB.59.1758
  44. 10.1103/PhysRevLett.77.3865
  45. 10.1063/1.3382344
  46. R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. de Groot, A. Wold, Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35, 6195–6202 (1987). (10.1103/PhysRevB.35.6195) / Phys. Rev. B / Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy by Coehoorn R. (1987)
  47. 10.1016/0022-4596(87)90057-0
  48. Y. Wang, Z. Wang, W. Yao, G.-B. Liu, H. Yu, Interlayer coupling in commensurate and incommensurate bilayer structures of transition metal dichalcogenides. Phys. Rev. B 95, 115429 (2017). (10.1103/PhysRevB.95.115429) / Phys. Rev. B / Interlayer coupling in commensurate and incommensurate bilayer structures of transition metal dichalcogenides by Wang Y. (2017)
  49. H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, F. Rana, Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2. Phys. Rev. B 93, 045407 (2016). (10.1103/PhysRevB.93.045407) / Phys. Rev. B / Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2 by Wang H. (2016)
  50. C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, R. Huber, Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015). (10.1038/nmat4356) / Nat. Mater. / Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2 by Poellmann C. (2015)
  51. 10.1021/acs.nanolett.6b03398
  52. T. Byrnes, P. Recher, Y. Yamamoto, Mott transitions of exciton-polaritons and indirect excitons in a periodic potential. Phys. Rev. B 81, 205312 (2010). (10.1103/PhysRevB.81.205312) / Phys. Rev. B / Mott transitions of exciton-polaritons and indirect excitons in a periodic potential by Byrnes T. (2010)
  53. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Phys. Rev. B 58, 7926–7933 (1998). (10.1103/PhysRevB.58.7926) / Phys. Rev. B / Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells by Ciuti C. (1998)
  54. S. B.-T. de-Leon, B. Laikhtman, Exciton-exciton interactions in quantum wells: Optical properties and energy and spin relaxation. Phys. Rev. B 63, 125306 (2001). (10.1103/PhysRevB.63.125306) / Phys. Rev. B / Exciton-exciton interactions in quantum wells: Optical properties and energy and spin relaxation by de-Leon S. B.-T. (2001)
  55. M. Combescot, R. Combescot, M. Alloing, F. Dubin, Effects of fermion exchange on the polarization of exciton condensates. Phys. Rev. Lett. 114, 090401 (2015). (10.1103/PhysRevLett.114.090401) / Phys. Rev. Lett. / Effects of fermion exchange on the polarization of exciton condensates by Combescot M. (2015)
  56. G. Aivazian, H. Yu, S. Wu, J. Yan, D. G. Mandrus, D. Cobden, W. Yao, X. Xu, Many-body effects in nonlinear optical responses of 2D layered semiconductors. 2D Mater. 4, 025024 (2017). (10.1088/2053-1583/aa56f1) / 2D Mater. / Many-body effects in nonlinear optical responses of 2D layered semiconductors by Aivazian G. (2017)
Dates
Type When
Created 7 years, 9 months ago (Nov. 10, 2017, 8:40 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 1:47 p.m.)
Indexed 1 day, 22 hours ago (Aug. 23, 2025, 1:15 a.m.)
Issued 7 years, 9 months ago (Nov. 3, 2017)
Published 7 years, 9 months ago (Nov. 3, 2017)
Published Print 7 years, 9 months ago (Nov. 3, 2017)
Funders 8
  1. Croucher Foundation 10.13039/501100001692
    Awards2
    1. Croucher Innovation Award
    2. award347254
  2. University of Hong Kong 10.13039/501100003803

    Region: Asia

    gov (Universities (academic only))

    Labels4
    1. The University of Hong Kong
    2. 香港大學
    3. Universitas Hongkongensis
    4. HKU
    Awards2
    1. award347257
    2. ORA
  3. NSFC 10.13039/501100001809 National Natural Science Foundation of China

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards2
    1. Grant No. 11304014
    2. award347258
  4. Research Grants Council
    Awards2
    1. award347255
    2. HKU17302617
  5. University Grants Committee of Hong Kong
    Awards2
    1. award347256
    2. AoE/P-04/08
  6. Cottrell Scholar Award
    Awards1
    1. award347261
  7. China 973 Program
    Awards2
    1. award347259
    2. Grant No. 2013CB934500
  8. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division
    Awards2
    1. award347260
    2. DE-SC0008145 and SC0012509

@article{Yu_2017, title={Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices}, volume={3}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1701696}, DOI={10.1126/sciadv.1701696}, number={11}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Yu, Hongyi and Liu, Gui-Bin and Tang, Jianju and Xu, Xiaodong and Yao, Wang}, year={2017}, month=nov }