Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

Charge carriers in both hybrid and all-inorganic lead halide perovskites form large polarons.

Bibliography

Miyata, K., Meggiolaro, D., Trinh, M. T., Joshi, P. P., Mosconi, E., Jones, S. C., De Angelis, F., & Zhu, X.-Y. (2017). Large polarons in lead halide perovskites. Science Advances, 3(8).

Authors 8
  1. Kiyoshi Miyata (first)
  2. Daniele Meggiolaro (additional)
  3. M. Tuan Trinh (additional)
  4. Prakriti P. Joshi (additional)
  5. Edoardo Mosconi (additional)
  6. Skyler C. Jones (additional)
  7. Filippo De Angelis (additional)
  8. X.-Y. Zhu (additional)
References 69 Referenced 618
  1. K. Miyano, N. Tripathi, M. Yanagida, Y. Shirai, Lead halide perovskite photovoltaic as a model p−i−n diode. Acc. Chem. Res. 49, 303–310 (2016). (10.1021/acs.accounts.5b00436) / Acc. Chem. Res. / Lead halide perovskite photovoltaic as a model p−i−n diode by Miyano K. (2016)
  2. 10.1002/anie.201409740
  3. 10.1063/1.4864778
  4. 10.1126/science.1243167
  5. 10.1126/science.aaa5760
  6. 10.1126/science.aaa2725
  7. 10.1146/annurev-physchem-040215-112222
  8. 10.1038/ncomms12253
  9. J. S. Manser, J. A. Christians, P. V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016). (10.1021/acs.chemrev.6b00136) / Chem. Rev. / Intriguing optoelectronic properties of metal halide perovskites by Manser J. S. (2016)
  10. 10.1038/nenergy.2016.48
  11. T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic—inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). (10.1038/natrevmats.2015.7) / Nat. Rev. Mater. / Hybrid organic—inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties by Brenner T. M. (2016)
  12. C. Quarti, E. Mosconi, F. De Angelis, Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 17, 9394–9409 (2015). (10.1039/C5CP00599J) / Phys. Chem. Chem. Phys. / Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics by Quarti C. (2015)
  13. A. Filippetti, A. Mattoni, Hybrid perovskites for photovoltaics: Insights from first principles. Phys. Rev. B 89, 125203 (2014). (10.1103/PhysRevB.89.125203) / Phys. Rev. B / Hybrid perovskites for photovoltaics: Insights from first principles by Filippetti A. (2014)
  14. F. Zheng, L. Z. Tan, S. Liu, A. M. Rappe, Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794–7800 (2015). (10.1021/acs.nanolett.5b01854) / Nano Lett. / Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3 by Zheng F. (2015)
  15. J. Ma, L.-W. Wang, Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett. 15, 248–253 (2015). (10.1021/nl503494y) / Nano Lett. / Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3 by Ma J. (2015)
  16. J. Even, M. Carignano, C. Katan, Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites. Nanoscale 8, 6222–6236 (2016). (10.1039/C5NR06386H) / Nanoscale / Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites by Even J. (2016)
  17. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014). (10.1021/nl5012992) / Nano Lett. / Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin–orbit coupling and octahedra tilting by Amat A. (2014)
  18. A. Walsh, Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C 119, 5755–5760 (2015). (10.1021/jp512420b) / J. Phys. Chem. C / Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites by Walsh A. (2015)
  19. 10.1021/acs.jpclett.5b02462
  20. 10.1126/science.aaf9570
  21. C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J. M. Ball, M. M. Lee, H. J. Snaith, A. Petrozza, F. D. Angelis, The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014). (10.1021/jz402589q) / J. Phys. Chem. Lett. / The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment by Quarti C. (2014)
  22. M. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015). (10.1021/acs.jpclett.5b00968) / J. Phys. Chem. Lett. / How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells by Kulbak M. (2015)
  23. H. Zhu, M. T. Trinh, J. Wang, Y. Fu, P. P. Joshi, K. Miyata, S. Jin, X.-Y. Zhu, Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29, 1603072 (2017). (10.1002/adma.201603072) / Adv. Mater. / Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites by Zhu H. (2017)
  24. L. A. Frolova, D. V. Anokhin, A. A. Piryazev, S. Y. Luchkin, N. N. Dremova, K. J. Stevenson, P. A. Troshin, Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67–72 (2017). (10.1021/acs.jpclett.6b02594) / J. Phys. Chem. Lett. / Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2 by Frolova L. A. (2017)
  25. G. R. Berdiyorov, A. Kachmar, F. El-Mellouhi, M. A. Carignano, M. E.-A. Madjet, Role of cations on the electronic transport and optical properties of lead-iodide perovskites. J. Phys. Chem. C 120, 16259–16270 (2016). (10.1021/acs.jpcc.6b01818) / J. Phys. Chem. C / Role of cations on the electronic transport and optical properties of lead-iodide perovskites by Berdiyorov G. R. (2016)
  26. D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids. IEEE J. Quantum Electron. 24, 443–454 (1988). (10.1109/3.144) / IEEE J. Quantum Electron. / Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids by McMorrow D. (1988)
  27. 10.1126/science.262.5138.1386
  28. K. Polok, B. Ratajska-Gadomska, J. Konarska, W. Gadomski, Coherent optical phonons in pure and Pr3+ doped YAG crystal studied by Optical Kerr Effect spectroscopy: Temperature and concentration dependence. Chem. Phys. 442, 119–127 (2014). (10.1016/j.chemphys.2014.02.015) / Chem. Phys. / Coherent optical phonons in pure and Pr3+ doped YAG crystal studied by Optical Kerr Effect spectroscopy: Temperature and concentration dependence by Polok K. (2014)
  29. T. Ivanovska, C. Quarti, G. Grancini, A. Petrozza, F. De Angelis, A. Milani, G. Ruani, Vibrational response of methylammonium lead iodide: From cation dynamics to phonon–phonon interactions. ChemSusChem 9, 2994–3004 (2016). (10.1002/cssc.201600932) / ChemSusChem / Vibrational response of methylammonium lead iodide: From cation dynamics to phonon–phonon interactions by Ivanovska T. (2016)
  30. 10.1103/PhysRevLett.118.136001
  31. R. Loudon, Theory of the first-order Raman effect in crystals. Proc. R. Soc. Lond. A 275, 218–232 (1963). (10.1098/rspa.1963.0166) / Proc. R. Soc. Lond. A / Theory of the first-order Raman effect in crystals by Loudon R. (1963)
  32. C. Motta, F. El-Mellouhi, S. Sanvito, Exploring the cation dynamics in lead-bromide hybrid perovskites. Phys. Rev. B 93, 235412 (2016). (10.1103/PhysRevB.93.235412) / Phys. Rev. B / Exploring the cation dynamics in lead-bromide hybrid perovskites by Motta C. (2016)
  33. Y. Rakita, S. R. Cohen, N. K. Kedem, G. Hodes, D. Cahen, Mechanical properties of APbX3 (A=Cs or CH3NH3; X=I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015). (10.1557/mrc.2015.69) / MRS Commun. / Mechanical properties of APbX3 (A=Cs or CH3NH3; X=I or Br) perovskite single crystals by Rakita Y. (2015)
  34. B. R. Bennett, R. A. Soref, J. A. Del Alamo, Carrier-induced change in refractive index of InP, GaAs, and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990). (10.1109/3.44924) / IEEE J. Quantum Electron. / Carrier-induced change in refractive index of InP, GaAs, and InGaAsP by Bennett B. R. (1990)
  35. J. Shah Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Science & Business Media 2013) vol. 115.
  36. 10.1063/1.472933
  37. D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, A. Petrozza, Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation. J. Am. Chem. Soc. 139, 39–42 (2016). (10.1021/jacs.6b10390) / J. Am. Chem. Soc. / Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation by Cortecchia D. (2016)
  38. Q. A. Akkerman, S. G. Motti, A. R. Srimath Kandada, E. Mosconi, V. D’Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, L. Manna, Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016). (10.1021/jacs.5b12124) / J. Am. Chem. Soc. / Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control by Akkerman Q. A. (2016)
  39. 10.1021/acs.jpclett.7b01357
  40. Y. Zhou, L. You, S. Wang, Z. Ku, H. Fan, D. Schmidt, A. Rusydi, L. Chang, L. Wang, P. Ren, L. Chen, G. Yuan, L. Chen, J. Wang, Giant photostriction in organic–inorganic lead halide perovskites. Nat. Commun. 7, 11193 (2016). (10.1038/ncomms11193) / Nat. Commun. / Giant photostriction in organic–inorganic lead halide perovskites by Zhou Y. (2016)
  41. K. Zheng, M. Abdellah, Q. Zhu, Q. Kong, G. Jennings, C. A. Kurtz, M. E. Messing, Y. Niu, D. J. Gosztola, M. J. Al-Marri, X. Zhang, T. Pullerits, S. E. Canton, Direct experimental evidence for photoinduced strong-coupling polarons in organolead halide perovskite nanoparticles. J. Phys. Chem. Lett. 7, 4535–4539 (2016). (10.1021/acs.jpclett.6b02046) / J. Phys. Chem. Lett. / Direct experimental evidence for photoinduced strong-coupling polarons in organolead halide perovskite nanoparticles by Zheng K. (2016)
  42. 10.1021/jz500858a
  43. 10.1080/00018735400101213
  44. R. P. Feynman, Slow electrons in a polar crystal. Phys. Rev. 97, 660–665 (1955). (10.1103/PhysRev.97.660) / Phys. Rev. / Slow electrons in a polar crystal by Feynman R. P. (1955)
  45. 10.1143/PTP.22.437
  46. 10.1103/PhysRevLett.100.226403
  47. M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik, H. J. Snaith, A. Pucci, R. Lovrinči, Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horizons 3, 1–8 (2016). / Mater. Horizons / Optical phonons in methylammonium lead halide perovskites and implications for charge transport by Sendner M. (2016)
  48. J. M. Frost Calculating polaron mobility in halide perovskites. arXiv:1704.05404 (2017). (10.1103/PhysRevB.96.195202)
  49. 10.1038/ncomms8586
  50. 10.1002/adma.201600011
  51. M. Karakus, S. A. Jensen, F. D’Angelo, D. Turchinovich, M. Bonn, E. Cánovas, Phonon–electron scattering limits free charge mobility in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 4991–4996 (2015). (10.1021/acs.jpclett.5b02485) / J. Phys. Chem. Lett. / Phonon–electron scattering limits free charge mobility in methylammonium lead iodide perovskites by Karakus M. (2015)
  52. J. Bardeen, W. Shockley, Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72–80 (1950). (10.1103/PhysRev.80.72) / Phys. Rev. / Deformation potentials and mobilities in non-polar crystals by Bardeen J. (1950)
  53. Y. He, G. Galli, Perovskites for solar thermoelectric applications: A first principle study of CH3NH3AI3 (A = Pb and Sn). Chem. Mater. 26, 5394–5400 (2014). (10.1021/cm5026766) / Chem. Mater. / Perovskites for solar thermoelectric applications: A first principle study of CH3NH3AI3 (A = Pb and Sn) by He Y. (2014)
  54. T. Zhao, W. Shi, J. Xi, D. Wang, Z. Shuai, Intrinsic and extrinsic charge transport in CH3NH3PbI3 perovskites predicted from first-principles. Sci. Rep. 7, 19968 (2016). (10.1038/srep19968) / Sci. Rep. / Intrinsic and extrinsic charge transport in CH3NH3PbI3 perovskites predicted from first-principles by Zhao T. (2016)
  55. Y. Wang, Y. Zhang, P. Zhang, W. Zhang, High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 11516–11520 (2015). (10.1039/C5CP00448A) / Phys. Chem. Chem. Phys. / High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3 by Wang Y. (2015)
  56. 10.1038/ncomms14398
  57. 10.1021/acs.nanolett.6b01218
  58. D. Niesner, H. Zhu, K. Miyata, P. P. Joshi, T. J. S. Evans, B. J. Kudisch, M. T. Trinh, M. Marks, X.-Y. Zhu, Persistent energetic electrons in methylammonium lead iodide perovskite thin films. J. Am. Chem. Soc. 138, 15717–15726 (2016). (10.1021/jacs.6b08880) / J. Am. Chem. Soc. / Persistent energetic electrons in methylammonium lead iodide perovskite thin films by Niesner D. (2016)
  59. 10.1126/science.aad5845
  60. 10.1021/acs.cgd.6b00764
  61. F. C. Hanusch, E. Wiesenmayer, E. Mankel, A. Binek, P. Angloher, C. Fraunhofer, N. Giesbrecht, J. M. Feckl, W. Jaegermann, D. Johrendt, T. Bein, P. Docampo, Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 5, 2791–2795 (2014). (10.1021/jz501237m) / J. Phys. Chem. Lett. / Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide by Hanusch F. C. (2014)
  62. M. Rodová, J. Brožek, K. Knížek, K. Nitsch, Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003). (10.1023/A:1022836800820) / J. Therm. Anal. Calorim. / Phase transitions in ternary caesium lead bromide by Rodová M. (2003)
  63. 10.1038/ncomms8961
  64. 10.1103/PhysRevLett.77.3865
  65. 10.1088/0953-8984/21/39/395502
  66. T. D. Schultz, Slow electrons in polar crystals: Self-energy, mass, and mobility. Phys. Rev. 116, 526–543 (1959). (10.1103/PhysRev.116.526) / Phys. Rev. / Slow electrons in polar crystals: Self-energy, mass, and mobility by Schultz T. D. (1959)
  67. R. W. Hellwarth, I. Biaggio, Mobility of an electron in a multimode polar lattice. Phys. Rev. B 60, 299–307 (1999). (10.1103/PhysRevB.60.299) / Phys. Rev. B / Mobility of an electron in a multimode polar lattice by Hellwarth R. W. (1999)
  68. 10.1103/PhysRev.127.1004
  69. 10.1021/acs.nanolett.6b01168
Dates
Type When
Created 8 years ago (Aug. 11, 2017, 9 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 1:39 p.m.)
Indexed 2 hours, 13 minutes ago (Aug. 23, 2025, 9:48 p.m.)
Issued 8 years ago (Aug. 4, 2017)
Published 8 years ago (Aug. 4, 2017)
Published Print 8 years ago (Aug. 4, 2017)
Funders 2
  1. Air Force Office of Scientific Research 10.13039/100000181

    Region: Americas

    gov (National government)

    Labels4
    1. AF Office of Scientific Research
    2. US Air Force Office of Scientific Research
    3. United States Air Force Office of Scientific Research
    4. AFOSR
    Awards2
    1. award331568
    2. FA9550-14-1-0381
  2. Office of Science 10.13039/100006132

    Region: Americas

    gov (National government)

    Labels8
    1. U.S. DOE Office of Science
    2. DOE Office of Science
    3. DOE's Office of Science
    4. Department of Energy's (DOE's) Office of Science
    5. The DOE Office of Science
    6. U.S. Department of Energy Office of Science
    7. U.S. Dept. of Energy Office of Science
    8. SC
    Awards2
    1. ER46980
    2. award331569

@article{Miyata_2017, title={Large polarons in lead halide perovskites}, volume={3}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1701217}, DOI={10.1126/sciadv.1701217}, number={8}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Miyata, Kiyoshi and Meggiolaro, Daniele and Trinh, M. Tuan and Joshi, Prakriti P. and Mosconi, Edoardo and Jones, Skyler C. and De Angelis, Filippo and Zhu, X.-Y.}, year={2017}, month=aug }