Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

High thermal conductivity in amorphous polymer films via ionization-induced chain extension and stiffening, and dense packing.

Bibliography

Shanker, A., Li, C., Kim, G.-H., Gidley, D., Pipe, K. P., & Kim, J. (2017). High thermal conductivity in electrostatically engineered amorphous polymers. Science Advances, 3(7).

Authors 6
  1. Apoorv Shanker (first)
  2. Chen Li (additional)
  3. Gun-Ho Kim (additional)
  4. David Gidley (additional)
  5. Kevin P. Pipe (additional)
  6. Jinsang Kim (additional)
References 55 Referenced 109
  1. H. Chen, V. V. Ginzberg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). (10.1016/j.progpolymsci.2016.03.001) / Prog. Polym. Sci. / Thermal conductivity of polymer-based composites: Fundamentals and applications by Chen H. (2016)
  2. S. Gelin, H. Tanaka, A. Lemaitre, Anomalous phonon scattering and elastic correlations in amorphous solids. Nat. Mater. 15, 1177–1181 (2016). (10.1038/nmat4736) / Nat. Mater. / Anomalous phonon scattering and elastic correlations in amorphous solids by Gelin S. (2016)
  3. A. Henry, G. Chen, High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008). (10.1103/PhysRevLett.101.235502) / Phys. Rev. Lett. / High thermal conductivity of single polyethylene chains using molecular dynamics simulations by Henry A. (2008)
  4. S. Shen, A. Henry, J. Tong, R. T. Zheng, G. Chen, Polyethylene nanofibers with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010). (10.1038/nnano.2010.27) / Nat. Nanotechnol. / Polyethylene nanofibers with very high thermal conductivities by Shen S. (2010)
  5. C. L. Choy, Thermal conductivity of polymers. Polymer 18, 984–1004 (1977). (10.1016/0032-3861(77)90002-7) / Polymer / Thermal conductivity of polymers by Choy C. L. (1977)
  6. K. Kurabayashi, M. Asheghi, M. Touzelbaev, K. E. Goodson, Measurement of the thermal conductivity anisotropy in polyimide films. J. Microelectromech. Syst. 8, 180–191 (1999). (10.1109/84.767114) / J. Microelectromech. Syst. / Measurement of the thermal conductivity anisotropy in polyimide films by Kurabayashi K. (1999)
  7. V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, B. A. Cola, High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014). (10.1038/nnano.2014.44) / Nat. Nanotechnol. / High thermal conductivity of chain-oriented amorphous polythiophene by Singh V. (2014)
  8. A. Roy, T. L. Bougher, R. Geng, Y. Ke, J. Locklin, B. A. Cola, Thermal conductance of poly(3-methylthiophene) brushes. ACS Appl. Mater. Interfaces 8, 25578–25585 (2016). (10.1021/acsami.6b04429) / ACS Appl. Mater. Interfaces / Thermal conductance of poly(3-methylthiophene) brushes by Roy A. (2016)
  9. M. D. Losego, L. Moh, K. A. Arpin, D. G. Cahill, P. V. Braun, Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 011908 (2010). (10.1063/1.3458802) / Appl. Phys. Lett. / Interfacial thermal conductance in spun-cast polymer films and polymer brushes by Losego M. D. (2010)
  10. W.-P. Hsieh, M. D. Losego, P. V. Braun, S. Shenogin, P. Keblinski, D. G. Cahill, Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83, 174205 (2011). (10.1103/PhysRevB.83.174205) / Phys. Rev. B / Testing the minimum thermal conductivity model for amorphous polymers using high pressure by Hsieh W.-P. (2011)
  11. 10.1080/13642819908223054
  12. S. Shenogin, A. Bodapati, P. Keblinski, A. J. H. McGaughey, Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity. J. Appl. Phys. 105, 034906 (2009). (10.1063/1.3073954) / J. Appl. Phys. / Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity by Shenogin S. (2009)
  13. 10.1038/ncomms2630
  14. A. Henry, Thermal transport in polymers. Annu. Rev. Heat Transfer 17, 485–520 (2013). (10.1615/AnnualRevHeatTransfer.2013006949) / Annu. Rev. Heat Transfer / Thermal transport in polymers by Henry A. (2013)
  15. 10.1063/1.363923
  16. T. Borca-Tasciuc, A. R. Kumar, G. Chen, Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72, 2139–2147 (2001). (10.1063/1.1353189) / Rev. Sci. Instrum. / Data reduction in 3ω method for thin-film thermal conductivity determination by Borca-Tasciuc T. (2001)
  17. J. Choi, M. F. Rubner, Influence of degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38, 116–124 (2005). (10.1021/ma048596o) / Macromolecules / Influence of degree of ionization on weak polyelectrolyte multilayer assembly by Choi J. (2005)
  18. A. F. Xie, S. Granick, Local electrostatics within a polyelectrolyte multilayer with embedded weak polyelectrolyte. Macromolecules 35, 1805–1813 (2002). (10.1021/ma011293z) / Macromolecules / Local electrostatics within a polyelectrolyte multilayer with embedded weak polyelectrolyte by Xie A. F. (2002)
  19. D. W. van Krevelen K. Te Nijenhuis Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions (Elsevier ed. 4 2009).
  20. S. W. Cranford, M. J. Buehler, Variation of weak polyelectrolyte persistence length through an electrostatic contour length. Macromolecules 45, 8067–8082 (2012). (10.1021/ma3008465) / Macromolecules / Variation of weak polyelectrolyte persistence length through an electrostatic contour length by Cranford S. W. (2012)
  21. D. Stigter, K. A. Dill, Theory of radii and second virial coefficients. 2. Weakly charged polyelectrolytes. Macromolecules 28, 5338–5346 (1995). (10.1021/ma00119a025) / Macromolecules / Theory of radii and second virial coefficients. 2. Weakly charged polyelectrolytes by Stigter D. (1995)
  22. H.-i. Lee, J. R. Boyce, A. Nese, S. S. Sheiko, K. Matyjaszewski, pH-induced conformational changes of loosely grafted molecular brushes containing poly(acrylic acid) side chains. Polymer 49, 5490–5496 (2008). (10.1016/j.polymer.2008.10.001) / Polymer / pH-induced conformational changes of loosely grafted molecular brushes containing poly(acrylic acid) side chains by Lee H.-i. (2008)
  23. W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus. J. Mater. Res. 7, 1564–1583 (1992). (10.1557/JMR.1992.1564) / J. Mater. Res. / An improved technique for determining hardness and elastic modulus by Oliver W. C. (1992)
  24. R. Akhtar, N. Schwarzer, M. J. Sherratt, R. E. B. Watson, H. K. Graham, A. W. Trafford, P. M. Mummery, B. Derby, Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues. J. Mater. Res. 24, 638–646 (2009). (10.1557/jmr.2009.0130) / J. Mater. Res. / Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues by Akhtar R. (2009)
  25. B.-G. Kim, E. J. Jeong, J. W. Chung, S. Seo, B. Koo, J. Kim, A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics. Nat. Mater. 12, 659–664 (2013). (10.1038/nmat3595) / Nat. Mater. / A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics by Kim B.-G. (2013)
  26. A. Eisenberg, Glass transitions in ionic polymers. Macromolecules 4, 125–128 (1971). (10.1021/ma60019a026) / Macromolecules / Glass transitions in ionic polymers by Eisenberg A. (1971)
  27. A. Eisenberg, H. Matsura, T. Yokoyama, Glass transition in ionic polymers: The acrylates. J. Polym. Sci. B 9, 2131–2135 (1971). / J. Polym. Sci. B / Glass transition in ionic polymers: The acrylates by Eisenberg A. (1971)
  28. K. Hiraoka, H. Shin, T. Yokoyama, Density measurements of poly(acrylic acid) sodium salts. Polym. Bull. 8, 303–309 (1982). (10.1007/BF00264918) / Polym. Bull. / Density measurements of poly(acrylic acid) sodium salts by Hiraoka K. (1982)
  29. M. Todica, T. Stefan, S. Simon, I. Balasz, L. Daraban, UV-vis and XRD investigation of graphite-doped poly(acrylic) acid membranes. Turk. J. Phys. 38, 261–267 (2014). (10.3906/fiz-1305-16) / Turk. J. Phys. / UV-vis and XRD investigation of graphite-doped poly(acrylic) acid membranes by Todica M. (2014)
  30. S. Komaba, N. Yabuuchi, T. Ozeki, Z.-J. Han, K. Shimomura, H. Yui, Y. Katayama, T. Miura, Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries. J. Phys. Chem. C 116, 1380–1389 (2012). (10.1021/jp204817h) / J. Phys. Chem. C / Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries by Komaba S. (2012)
  31. V. R. Raghavan, H. Martin, Modelling of two-phase thermal conductivity. Chem. Eng. Process. 34, 439–446 (1995). (10.1016/0255-2701(94)00577-X) / Chem. Eng. Process. / Modelling of two-phase thermal conductivity by Raghavan V. R. (1995)
  32. T. Brar, P. France, P. G. Smirniotis, Heterogeneous versus homogeneous nucleation and growth of zeolite A. J. Phys. Chem. B 105, 5383–5390 (2001). (10.1021/jp003012f) / J. Phys. Chem. B / Heterogeneous versus homogeneous nucleation and growth of zeolite A by Brar T. (2001)
  33. X. Xie, D. Li, T.-H. Tsai, J. Liu, P. V. Braun, D. G. Cahill, Thermal conductivity, heat capacity, and elastic constants of water soluble polymers and polymer blends. Macromolecules 49, 972–978 (2016). (10.1021/acs.macromol.5b02477) / Macromolecules / Thermal conductivity, heat capacity, and elastic constants of water soluble polymers and polymer blends by Xie X. (2016)
  34. X. Liu, J. L. Feldman, D. G. Cahill, R. S. Crandall, N. Bernstein, D. M. Photiadis, M. J. Mehl, D. A. Papaconstantopoulos, High thermal conductivity of a hydrogenated amorphous silicon film. Phys. Rev. Lett. 102, 035901 (2009). (10.1103/PhysRevLett.102.035901) / Phys. Rev. Lett. / High thermal conductivity of a hydrogenated amorphous silicon film by Liu X. (2009)
  35. X. Xie, K. Yang, D. Li, T.-H. Tsai, J. Shin, P. V. Braun, D. G. Cahill, High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95, 035406 (2017). (10.1103/PhysRevB.95.035406) / Phys. Rev. B / High and low thermal conductivity of amorphous macromolecules by Xie X. (2017)
  36. T. Zhang, T. Luo, Role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J. Phys. Chem. B 120, 803–812 (2016). (10.1021/acs.jpcb.5b09955) / J. Phys. Chem. B / Role of chain morphology and stiffness in thermal conductivity of amorphous polymers by Zhang T. (2016)
  37. J. Vogelsang, J. Brazard, T. Adachi, J. C. Bolinger, P. F. Barbara, Watching the annealing process one polymer chain at a time. Angew. Chem. 123, 2305–2309 (2011). (10.1002/ange.201007084) / Angew. Chem. / Watching the annealing process one polymer chain at a time by Vogelsang J. (2011)
  38. Y. S. Jung, C. A. Ross, Solvent-vapor-induced tunability of self-assembled block copolymer patterns. Adv. Mater. 21, 2540–2545 (2009). (10.1002/adma.200802855) / Adv. Mater. / Solvent-vapor-induced tunability of self-assembled block copolymer patterns by Jung Y. S. (2009)
  39. H. Ghasemi T. Nagarajan X. Huang J. Loomis X. Li J. Tong J. Wang G. Chen High thermal conductivity ultra-high molecular weight polyethylene (UHMWPE) films in Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (IEEE 2014) pp. 235–239. (10.1109/ITHERM.2014.6892287)
  40. V. A. Kargin, S. Y. Mirlina, V. A. Kabanov, G. A. Mikheleva, A study of the structure of isotactic polyacrylic acid and its salts. Vysokomol. Soedin. 3, 139–143 (1961). / Vysokomol. Soedin. / A study of the structure of isotactic polyacrylic acid and its salts by Kargin V. A. (1961)
  41. M. L. Miller, K. O’Donnell, J. Skogman, Crystalline polyacrylic acid. J. Colloid Sci. 17, 649–659 (1962). (10.1016/0095-8522(62)90029-6) / J. Colloid Sci. / Crystalline polyacrylic acid by Miller M. L. (1962)
  42. D. G. Cahill, Thermal-conductivity measurement from 30K to 750K: The 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990). (10.1063/1.1141498) / Rev. Sci. Instrum. / Thermal-conductivity measurement from 30K to 750K: The 3ω method by Cahill D. G. (1990)
  43. T. Borca-Tasciuc, D. Song, J. L. Liu, G. Chen, K. L. Wang, X. Sun, M. S. Dresselhaus, T. Radetic, R. Gronsky, Anisotropic thermal conductivity of a Si/Ge superlattice. Mater. Res. Soc. Symp. Proc. 545, 473 (1998). (10.1557/PROC-545-473) / Mater. Res. Soc. Symp. Proc. / Anisotropic thermal conductivity of a Si/Ge superlattice by Borca-Tasciuc T. (1998)
  44. Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, A. C. Gossard, Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 054303 (2009). (10.1063/1.3078808) / J. Appl. Phys. / Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors by Koh Y. K. (2009)
  45. A. Richter, R. Guico, J. Wang, Calibrating an ellipsometer using x-ray reflectivity. Rev. Sci. Instrum. 72, 3004–3007 (2001). (10.1063/1.1379603) / Rev. Sci. Instrum. / Calibrating an ellipsometer using x-ray reflectivity by Richter A. (2001)
  46. B. Armstrong Dektak XT: Standard Operating Procedure (2014).
  47. J. Liu, S. Ju, Y. Ding, R. Yang, Size effect on the thermal conductivity of ultrathin polystyrene films size effect on the thermal conductivity of ultrathin polystyrene films. Appl. Phys. Lett. 104, 153110 (2014). (10.1063/1.4871737) / Appl. Phys. Lett. / Size effect on the thermal conductivity of ultrathin polystyrene films size effect on the thermal conductivity of ultrathin polystyrene films by Liu J. (2014)
  48. K. Zheng, F. Sun, X. Tian, J. Zhu, Y. Ma, D. Tang, F. Wang, Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion. ACS Appl. Mater. Interfaces 7, 23644–23649 (2015). (10.1021/acsami.5b07188) / ACS Appl. Mater. Interfaces / Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion by Zheng K. (2015)
  49. R. J. Stevens, A. N. Smith, P. M. Norris, Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. J. Heat Transfer 127, 315–322 (2016). (10.1115/1.1857944) / J. Heat Transfer / Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique by Stevens R. J. (2016)
  50. K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, X. Wang, Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano 10, 7792–7798 (2016). (10.1021/acsnano.6b03381) / ACS Nano / Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer by Zheng K. (2016)
  51. K. Zheng, J. Zhu, Y.-M. Ma, D.-W. Tang, F.-S. Wang, Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire. Chin. Phys. B 23, 107307 (2014). (10.1088/1674-1056/23/10/107307) / Chin. Phys. B / Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire by Zheng K. (2014)
  52. A. B. Unni, G. Vignaud, J. P. Chapel, J. Giermanska, J. K. Bal, N. Delorme, T. Beuvier, S. Thomas, Y. Grohens, A. Gibaud, Probing the density variation of confined polymer thin films via simple model-independent nanoparticle adsorption. Macromolecules 50, 1027–1036 (2017). (10.1021/acs.macromol.6b02617) / Macromolecules / Probing the density variation of confined polymer thin films via simple model-independent nanoparticle adsorption by Unni A. B. (2017)
  53. D. W. Gidley, H.-G. Peng, R. S. Vallery, Positron annihilation as a method to characterize porous materials. Annu. Rev. Mater. Res. 36, 49–79 (2006). (10.1146/annurev.matsci.36.111904.135144) / Annu. Rev. Mater. Res. / Positron annihilation as a method to characterize porous materials by Gidley D. W. (2006)
  54. S. N. Magonov, V. Elings, M. H. Whangbo, Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375, 385–391 (1997). (10.1016/S0039-6028(96)01591-9) / Surf. Sci. / Phase imaging and stiffness in tapping-mode atomic force microscopy by Magonov S. N. (1997)
  55. J. Pawley, Low voltage scanning electron microscopy. J. Microsc. 136, 45–68 (1984). (10.1111/j.1365-2818.1984.tb02545.x) / J. Microsc. / Low voltage scanning electron microscopy by Pawley J. (1984)
Dates
Type When
Created 8 years ago (July 28, 2017, 9 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 1:24 p.m.)
Indexed 1 week, 5 days ago (Aug. 12, 2025, 6:37 p.m.)
Issued 8 years, 1 month ago (July 7, 2017)
Published 8 years, 1 month ago (July 7, 2017)
Published Print 8 years, 1 month ago (July 7, 2017)
Funders 2
  1. Horace H. Rackham School of Graduate Studies, University of Michigan 10.13039/100006801

    Region: Americas

    gov (Universities (academic only))

    Labels2
    1. Rackham Graduate School
    2. Rackham U-M
    Awards1
    1. award326598
  2. UM Energy Institute
    Awards1
    1. award326599

@article{Shanker_2017, title={High thermal conductivity in electrostatically engineered amorphous polymers}, volume={3}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1700342}, DOI={10.1126/sciadv.1700342}, number={7}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Shanker, Apoorv and Li, Chen and Kim, Gun-Ho and Gidley, David and Pipe, Kevin P. and Kim, Jinsang}, year={2017}, month=jul }