Crossref
journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
References
55
Referenced
109
-
H. Chen, V. V. Ginzberg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016).
(
10.1016/j.progpolymsci.2016.03.001
) / Prog. Polym. Sci. / Thermal conductivity of polymer-based composites: Fundamentals and applications by Chen H. (2016) -
S. Gelin, H. Tanaka, A. Lemaitre, Anomalous phonon scattering and elastic correlations in amorphous solids. Nat. Mater. 15, 1177–1181 (2016).
(
10.1038/nmat4736
) / Nat. Mater. / Anomalous phonon scattering and elastic correlations in amorphous solids by Gelin S. (2016) -
A. Henry, G. Chen, High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008).
(
10.1103/PhysRevLett.101.235502
) / Phys. Rev. Lett. / High thermal conductivity of single polyethylene chains using molecular dynamics simulations by Henry A. (2008) -
S. Shen, A. Henry, J. Tong, R. T. Zheng, G. Chen, Polyethylene nanofibers with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010).
(
10.1038/nnano.2010.27
) / Nat. Nanotechnol. / Polyethylene nanofibers with very high thermal conductivities by Shen S. (2010) -
C. L. Choy, Thermal conductivity of polymers. Polymer 18, 984–1004 (1977).
(
10.1016/0032-3861(77)90002-7
) / Polymer / Thermal conductivity of polymers by Choy C. L. (1977) -
K. Kurabayashi, M. Asheghi, M. Touzelbaev, K. E. Goodson, Measurement of the thermal conductivity anisotropy in polyimide films. J. Microelectromech. Syst. 8, 180–191 (1999).
(
10.1109/84.767114
) / J. Microelectromech. Syst. / Measurement of the thermal conductivity anisotropy in polyimide films by Kurabayashi K. (1999) -
V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, B. A. Cola, High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014).
(
10.1038/nnano.2014.44
) / Nat. Nanotechnol. / High thermal conductivity of chain-oriented amorphous polythiophene by Singh V. (2014) -
A. Roy, T. L. Bougher, R. Geng, Y. Ke, J. Locklin, B. A. Cola, Thermal conductance of poly(3-methylthiophene) brushes. ACS Appl. Mater. Interfaces 8, 25578–25585 (2016).
(
10.1021/acsami.6b04429
) / ACS Appl. Mater. Interfaces / Thermal conductance of poly(3-methylthiophene) brushes by Roy A. (2016) -
M. D. Losego, L. Moh, K. A. Arpin, D. G. Cahill, P. V. Braun, Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 011908 (2010).
(
10.1063/1.3458802
) / Appl. Phys. Lett. / Interfacial thermal conductance in spun-cast polymer films and polymer brushes by Losego M. D. (2010) -
W.-P. Hsieh, M. D. Losego, P. V. Braun, S. Shenogin, P. Keblinski, D. G. Cahill, Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83, 174205 (2011).
(
10.1103/PhysRevB.83.174205
) / Phys. Rev. B / Testing the minimum thermal conductivity model for amorphous polymers using high pressure by Hsieh W.-P. (2011) 10.1080/13642819908223054
-
S. Shenogin, A. Bodapati, P. Keblinski, A. J. H. McGaughey, Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity. J. Appl. Phys. 105, 034906 (2009).
(
10.1063/1.3073954
) / J. Appl. Phys. / Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity by Shenogin S. (2009) 10.1038/ncomms2630
-
A. Henry, Thermal transport in polymers. Annu. Rev. Heat Transfer 17, 485–520 (2013).
(
10.1615/AnnualRevHeatTransfer.2013006949
) / Annu. Rev. Heat Transfer / Thermal transport in polymers by Henry A. (2013) 10.1063/1.363923
-
T. Borca-Tasciuc, A. R. Kumar, G. Chen, Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72, 2139–2147 (2001).
(
10.1063/1.1353189
) / Rev. Sci. Instrum. / Data reduction in 3ω method for thin-film thermal conductivity determination by Borca-Tasciuc T. (2001) -
J. Choi, M. F. Rubner, Influence of degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38, 116–124 (2005).
(
10.1021/ma048596o
) / Macromolecules / Influence of degree of ionization on weak polyelectrolyte multilayer assembly by Choi J. (2005) -
A. F. Xie, S. Granick, Local electrostatics within a polyelectrolyte multilayer with embedded weak polyelectrolyte. Macromolecules 35, 1805–1813 (2002).
(
10.1021/ma011293z
) / Macromolecules / Local electrostatics within a polyelectrolyte multilayer with embedded weak polyelectrolyte by Xie A. F. (2002) - D. W. van Krevelen K. Te Nijenhuis Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions (Elsevier ed. 4 2009).
-
S. W. Cranford, M. J. Buehler, Variation of weak polyelectrolyte persistence length through an electrostatic contour length. Macromolecules 45, 8067–8082 (2012).
(
10.1021/ma3008465
) / Macromolecules / Variation of weak polyelectrolyte persistence length through an electrostatic contour length by Cranford S. W. (2012) -
D. Stigter, K. A. Dill, Theory of radii and second virial coefficients. 2. Weakly charged polyelectrolytes. Macromolecules 28, 5338–5346 (1995).
(
10.1021/ma00119a025
) / Macromolecules / Theory of radii and second virial coefficients. 2. Weakly charged polyelectrolytes by Stigter D. (1995) -
H.-i. Lee, J. R. Boyce, A. Nese, S. S. Sheiko, K. Matyjaszewski, pH-induced conformational changes of loosely grafted molecular brushes containing poly(acrylic acid) side chains. Polymer 49, 5490–5496 (2008).
(
10.1016/j.polymer.2008.10.001
) / Polymer / pH-induced conformational changes of loosely grafted molecular brushes containing poly(acrylic acid) side chains by Lee H.-i. (2008) -
W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus. J. Mater. Res. 7, 1564–1583 (1992).
(
10.1557/JMR.1992.1564
) / J. Mater. Res. / An improved technique for determining hardness and elastic modulus by Oliver W. C. (1992) -
R. Akhtar, N. Schwarzer, M. J. Sherratt, R. E. B. Watson, H. K. Graham, A. W. Trafford, P. M. Mummery, B. Derby, Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues. J. Mater. Res. 24, 638–646 (2009).
(
10.1557/jmr.2009.0130
) / J. Mater. Res. / Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues by Akhtar R. (2009) -
B.-G. Kim, E. J. Jeong, J. W. Chung, S. Seo, B. Koo, J. Kim, A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics. Nat. Mater. 12, 659–664 (2013).
(
10.1038/nmat3595
) / Nat. Mater. / A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics by Kim B.-G. (2013) -
A. Eisenberg, Glass transitions in ionic polymers. Macromolecules 4, 125–128 (1971).
(
10.1021/ma60019a026
) / Macromolecules / Glass transitions in ionic polymers by Eisenberg A. (1971) - A. Eisenberg, H. Matsura, T. Yokoyama, Glass transition in ionic polymers: The acrylates. J. Polym. Sci. B 9, 2131–2135 (1971). / J. Polym. Sci. B / Glass transition in ionic polymers: The acrylates by Eisenberg A. (1971)
-
K. Hiraoka, H. Shin, T. Yokoyama, Density measurements of poly(acrylic acid) sodium salts. Polym. Bull. 8, 303–309 (1982).
(
10.1007/BF00264918
) / Polym. Bull. / Density measurements of poly(acrylic acid) sodium salts by Hiraoka K. (1982) -
M. Todica, T. Stefan, S. Simon, I. Balasz, L. Daraban, UV-vis and XRD investigation of graphite-doped poly(acrylic) acid membranes. Turk. J. Phys. 38, 261–267 (2014).
(
10.3906/fiz-1305-16
) / Turk. J. Phys. / UV-vis and XRD investigation of graphite-doped poly(acrylic) acid membranes by Todica M. (2014) -
S. Komaba, N. Yabuuchi, T. Ozeki, Z.-J. Han, K. Shimomura, H. Yui, Y. Katayama, T. Miura, Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries. J. Phys. Chem. C 116, 1380–1389 (2012).
(
10.1021/jp204817h
) / J. Phys. Chem. C / Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries by Komaba S. (2012) -
V. R. Raghavan, H. Martin, Modelling of two-phase thermal conductivity. Chem. Eng. Process. 34, 439–446 (1995).
(
10.1016/0255-2701(94)00577-X
) / Chem. Eng. Process. / Modelling of two-phase thermal conductivity by Raghavan V. R. (1995) -
T. Brar, P. France, P. G. Smirniotis, Heterogeneous versus homogeneous nucleation and growth of zeolite A. J. Phys. Chem. B 105, 5383–5390 (2001).
(
10.1021/jp003012f
) / J. Phys. Chem. B / Heterogeneous versus homogeneous nucleation and growth of zeolite A by Brar T. (2001) -
X. Xie, D. Li, T.-H. Tsai, J. Liu, P. V. Braun, D. G. Cahill, Thermal conductivity, heat capacity, and elastic constants of water soluble polymers and polymer blends. Macromolecules 49, 972–978 (2016).
(
10.1021/acs.macromol.5b02477
) / Macromolecules / Thermal conductivity, heat capacity, and elastic constants of water soluble polymers and polymer blends by Xie X. (2016) -
X. Liu, J. L. Feldman, D. G. Cahill, R. S. Crandall, N. Bernstein, D. M. Photiadis, M. J. Mehl, D. A. Papaconstantopoulos, High thermal conductivity of a hydrogenated amorphous silicon film. Phys. Rev. Lett. 102, 035901 (2009).
(
10.1103/PhysRevLett.102.035901
) / Phys. Rev. Lett. / High thermal conductivity of a hydrogenated amorphous silicon film by Liu X. (2009) -
X. Xie, K. Yang, D. Li, T.-H. Tsai, J. Shin, P. V. Braun, D. G. Cahill, High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95, 035406 (2017).
(
10.1103/PhysRevB.95.035406
) / Phys. Rev. B / High and low thermal conductivity of amorphous macromolecules by Xie X. (2017) -
T. Zhang, T. Luo, Role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J. Phys. Chem. B 120, 803–812 (2016).
(
10.1021/acs.jpcb.5b09955
) / J. Phys. Chem. B / Role of chain morphology and stiffness in thermal conductivity of amorphous polymers by Zhang T. (2016) -
J. Vogelsang, J. Brazard, T. Adachi, J. C. Bolinger, P. F. Barbara, Watching the annealing process one polymer chain at a time. Angew. Chem. 123, 2305–2309 (2011).
(
10.1002/ange.201007084
) / Angew. Chem. / Watching the annealing process one polymer chain at a time by Vogelsang J. (2011) -
Y. S. Jung, C. A. Ross, Solvent-vapor-induced tunability of self-assembled block copolymer patterns. Adv. Mater. 21, 2540–2545 (2009).
(
10.1002/adma.200802855
) / Adv. Mater. / Solvent-vapor-induced tunability of self-assembled block copolymer patterns by Jung Y. S. (2009) -
H. Ghasemi T. Nagarajan X. Huang J. Loomis X. Li J. Tong J. Wang G. Chen High thermal conductivity ultra-high molecular weight polyethylene (UHMWPE) films in Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (IEEE 2014) pp. 235–239.
(
10.1109/ITHERM.2014.6892287
) - V. A. Kargin, S. Y. Mirlina, V. A. Kabanov, G. A. Mikheleva, A study of the structure of isotactic polyacrylic acid and its salts. Vysokomol. Soedin. 3, 139–143 (1961). / Vysokomol. Soedin. / A study of the structure of isotactic polyacrylic acid and its salts by Kargin V. A. (1961)
-
M. L. Miller, K. O’Donnell, J. Skogman, Crystalline polyacrylic acid. J. Colloid Sci. 17, 649–659 (1962).
(
10.1016/0095-8522(62)90029-6
) / J. Colloid Sci. / Crystalline polyacrylic acid by Miller M. L. (1962) -
D. G. Cahill, Thermal-conductivity measurement from 30K to 750K: The 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990).
(
10.1063/1.1141498
) / Rev. Sci. Instrum. / Thermal-conductivity measurement from 30K to 750K: The 3ω method by Cahill D. G. (1990) -
T. Borca-Tasciuc, D. Song, J. L. Liu, G. Chen, K. L. Wang, X. Sun, M. S. Dresselhaus, T. Radetic, R. Gronsky, Anisotropic thermal conductivity of a Si/Ge superlattice. Mater. Res. Soc. Symp. Proc. 545, 473 (1998).
(
10.1557/PROC-545-473
) / Mater. Res. Soc. Symp. Proc. / Anisotropic thermal conductivity of a Si/Ge superlattice by Borca-Tasciuc T. (1998) -
Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, A. C. Gossard, Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 054303 (2009).
(
10.1063/1.3078808
) / J. Appl. Phys. / Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors by Koh Y. K. (2009) -
A. Richter, R. Guico, J. Wang, Calibrating an ellipsometer using x-ray reflectivity. Rev. Sci. Instrum. 72, 3004–3007 (2001).
(
10.1063/1.1379603
) / Rev. Sci. Instrum. / Calibrating an ellipsometer using x-ray reflectivity by Richter A. (2001) - B. Armstrong Dektak XT: Standard Operating Procedure (2014).
-
J. Liu, S. Ju, Y. Ding, R. Yang, Size effect on the thermal conductivity of ultrathin polystyrene films size effect on the thermal conductivity of ultrathin polystyrene films. Appl. Phys. Lett. 104, 153110 (2014).
(
10.1063/1.4871737
) / Appl. Phys. Lett. / Size effect on the thermal conductivity of ultrathin polystyrene films size effect on the thermal conductivity of ultrathin polystyrene films by Liu J. (2014) -
K. Zheng, F. Sun, X. Tian, J. Zhu, Y. Ma, D. Tang, F. Wang, Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion. ACS Appl. Mater. Interfaces 7, 23644–23649 (2015).
(
10.1021/acsami.5b07188
) / ACS Appl. Mater. Interfaces / Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion by Zheng K. (2015) -
R. J. Stevens, A. N. Smith, P. M. Norris, Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. J. Heat Transfer 127, 315–322 (2016).
(
10.1115/1.1857944
) / J. Heat Transfer / Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique by Stevens R. J. (2016) -
K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, X. Wang, Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano 10, 7792–7798 (2016).
(
10.1021/acsnano.6b03381
) / ACS Nano / Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer by Zheng K. (2016) -
K. Zheng, J. Zhu, Y.-M. Ma, D.-W. Tang, F.-S. Wang, Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire. Chin. Phys. B 23, 107307 (2014).
(
10.1088/1674-1056/23/10/107307
) / Chin. Phys. B / Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire by Zheng K. (2014) -
A. B. Unni, G. Vignaud, J. P. Chapel, J. Giermanska, J. K. Bal, N. Delorme, T. Beuvier, S. Thomas, Y. Grohens, A. Gibaud, Probing the density variation of confined polymer thin films via simple model-independent nanoparticle adsorption. Macromolecules 50, 1027–1036 (2017).
(
10.1021/acs.macromol.6b02617
) / Macromolecules / Probing the density variation of confined polymer thin films via simple model-independent nanoparticle adsorption by Unni A. B. (2017) -
D. W. Gidley, H.-G. Peng, R. S. Vallery, Positron annihilation as a method to characterize porous materials. Annu. Rev. Mater. Res. 36, 49–79 (2006).
(
10.1146/annurev.matsci.36.111904.135144
) / Annu. Rev. Mater. Res. / Positron annihilation as a method to characterize porous materials by Gidley D. W. (2006) -
S. N. Magonov, V. Elings, M. H. Whangbo, Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375, 385–391 (1997).
(
10.1016/S0039-6028(96)01591-9
) / Surf. Sci. / Phase imaging and stiffness in tapping-mode atomic force microscopy by Magonov S. N. (1997) -
J. Pawley, Low voltage scanning electron microscopy. J. Microsc. 136, 45–68 (1984).
(
10.1111/j.1365-2818.1984.tb02545.x
) / J. Microsc. / Low voltage scanning electron microscopy by Pawley J. (1984)
Dates
Type | When |
---|---|
Created | 8 years ago (July 28, 2017, 9 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 1:24 p.m.) |
Indexed | 1 week, 5 days ago (Aug. 12, 2025, 6:37 p.m.) |
Issued | 8 years, 1 month ago (July 7, 2017) |
Published | 8 years, 1 month ago (July 7, 2017) |
Published Print | 8 years, 1 month ago (July 7, 2017) |
Funders
2
Horace H. Rackham School of Graduate Studies, University of Michigan
10.13039/100006801
Region: Americas
gov (Universities (academic only))
Labels
2
- Rackham Graduate School
- Rackham U-M
Awards
1
- award326598
UM Energy Institute
Awards
1
- award326599
@article{Shanker_2017, title={High thermal conductivity in electrostatically engineered amorphous polymers}, volume={3}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1700342}, DOI={10.1126/sciadv.1700342}, number={7}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Shanker, Apoorv and Li, Chen and Kim, Gun-Ho and Gidley, David and Pipe, Kevin P. and Kim, Jinsang}, year={2017}, month=jul }