Crossref
journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Authors
6
- Jeremie Maire (first)
- Roman Anufriev (additional)
- Ryoto Yanagisawa (additional)
- Aymeric Ramiere (additional)
- Sebastian Volz (additional)
- Masahiro Nomura (additional)
References
52
Referenced
187
10.1038/nphoton.2008.146
-
J. D. Joannopoulos, P. Villeneuve, S. Fan, Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997).
(
10.1038/386143a0
) / Nature / Photonic crystals: Putting a new twist on light by Joannopoulos J. D. (1997) 10.1038/nature12608
-
E. L. Thomas, T. Gorishnyy, M. Maldovan, Colloidal crystals go hypersonic. Nat. Mater. 5, 773–774 (2006).
(
10.1038/nmat1744
) / Nat. Mater. / Colloidal crystals go hypersonic by Thomas E. L. (2006) -
M. Maldovan, Phonon wave interference and thermal bandgap materials. Nat. Mater. 14, 667–674 (2015).
(
10.1038/nmat4308
) / Nat. Mater. / Phonon wave interference and thermal bandgap materials by Maldovan M. (2015) 10.1103/PhysRevB.84.085204
-
N. K. Ravichandran, A. J. Minnich, Coherent and incoherent thermal transport in nanomeshes. Phys. Rev. B 89, 205432 (2014).
(
10.1103/PhysRevB.89.205432
) / Phys. Rev. B / Coherent and incoherent thermal transport in nanomeshes by Ravichandran N. K. (2014) -
B. Qiu, G. Chen, Z. Tian, Effects of aperiodicity and roughness on coherent heat conduction in superlattices. Nanoscale Microscale Thermophys. Eng. 19, 272–278 (2016).
(
10.1080/15567265.2015.1102186
) / Nanoscale Microscale Thermophys. Eng. / Effects of aperiodicity and roughness on coherent heat conduction in superlattices by Qiu B. (2016) 10.1126/science.1225549
10.1038/nmat3826
-
M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 25902 (2013).
(
10.1103/PhysRevLett.110.025902
) / Phys. Rev. Lett. / Narrow low-frequency spectrum and heat management by thermocrystals by Maldovan M. (2013) -
A. M. Marconnet, M. Asheghi, K. E. Goodson, From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology. J. Heat Transfer 135, 061601 (2013).
(
10.1115/1.4023577
) / J. Heat Transfer / From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology by Marconnet A. M. (2013) 10.1038/nnano.2010.149
-
P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. OlssonIII, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, I. El-Kady, Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107–112 (2011).
(
10.1021/nl102918q
) / Nano Lett. / Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning by Hopkins P. E. (2011) -
S. Alaie, D. F. Goettler, M. Su, Z. C. Leseman, C. M. Reinke, I. El-Kady, Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nat. Commun. 6, 7228 (2015).
(
10.1038/ncomms8228
) / Nat. Commun. / Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature by Alaie S. (2015) -
A. Jain, Y.-J. Yu, A. J. H. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Phys. Rev. B Condens. Matter Mater. Phys. 87, 195301 (2013).
(
10.1103/PhysRevB.87.195301
) / Phys. Rev. B Condens. Matter Mater. Phys. / Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm by Jain A. (2013) -
A. J. Minnich, Advances in the measurement and computation of thermal phonon transport. J. Phys. Condens. Matter 27, 53202 (2015).
(
10.1088/0953-8984/27/5/053202
) / J. Phys. Condens. Matter / Advances in the measurement and computation of thermal phonon transport by Minnich A. J. (2015) 10.1038/ncomms4435
-
R. Anufriev, M. Nomura, Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types. Phys. Rev. B 93, 045410 (2016).
(
10.1103/PhysRevB.93.045410
) / Phys. Rev. B / Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types by Anufriev R. (2016) -
B. L. Davis, M. I. Hussein, Nanophononic metamaterial: Thermal conductivity reduction by local resonance. Phys. Rev. Lett. 112, 055505 (2014).
(
10.1103/PhysRevLett.112.055505
) / Phys. Rev. Lett. / Nanophononic metamaterial: Thermal conductivity reduction by local resonance by Davis B. L. (2014) -
H. Honarvar, M. I. Hussein, Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations. Phys. Rev. B 93, 081412 (2016).
(
10.1103/PhysRevB.93.081412
) / Phys. Rev. B / Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations by Honarvar H. (2016) -
R. Anufriev, M. Nomura, Heat conduction engineering in pillar-based phononic crystals. Phys. Rev. B 95, 155432 (2017).
(
10.1103/PhysRevB.95.155432
) / Phys. Rev. B / Heat conduction engineering in pillar-based phononic crystals by Anufriev R. (2017) -
I. J. Maasilta, T. A. Puurtinen, Y. Tian, Z. Geng, Phononic thermal conduction engineering for bolometers: From phononic crystals to radial casimir limit. J. Low Temp. Phys. 184, 211–216 (2016).
(
10.1007/s10909-015-1372-0
) / J. Low Temp. Phys. / Phononic thermal conduction engineering for bolometers: From phononic crystals to radial casimir limit by Maasilta I. J. (2016) -
M. R. Wagner, B. Graczykowski, J. S. Reparaz, A. El Sachat, M. Sledzinska, F. Alzina, C. M. S. Torres, Two-dimensional phononic crystals: Disorder matters. Nano Lett. 16, 5661–5668 (2016).
(
10.1021/acs.nanolett.6b02305
) / Nano Lett. / Two-dimensional phononic crystals: Disorder matters by Wagner M. R. (2016) -
J. Lee, W. Lee, G. Wehmeyer, S. Dhuey, D. L. Olynick, S. Cabrini, C. Dames, J. J. Urban, P. Yang, Investigation of phonon coherence backscattering using silicon nanomeshes. Nat. Commun. 8, 14054 (2017).
(
10.1038/ncomms14054
) / Nat. Commun. / Investigation of phonon coherence backscattering using silicon nanomeshes by Lee J. (2017) -
A. Balandin, K. L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998).
(
10.1103/PhysRevB.58.1544
) / Phys. Rev. B / Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well by Balandin A. (1998) -
J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932–2938 (2001).
(
10.1063/1.1345515
) / J. Appl. Phys. / Phonon heat conduction in a semiconductor nanowire by Zou J. (2001) -
F. Kargar, B. Debnath, J.-P. Kakko, A. Säynätjoki, H. Lipsanen, D. L. Nika, R. K. Lake, A. A. Balandin, Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. Nat. Commun. 7, 13400 (2016).
(
10.1038/ncomms13400
) / Nat. Commun. / Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires by Kargar F. (2016) -
F. Kargar, S. Ramirez, B. Debnath, H. Malekpour, R. K. Lake, A. A. Balandin, Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. Appl. Phys. Lett. 107, 171904 (2015).
(
10.1063/1.4934883
) / Appl. Phys. Lett. / Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays by Kargar F. (2015) -
R. Anufriev, A. Ramiere, J. Maire, M. Nomura, Heat guiding and focusing using ballistic phonon transport in phononic nanostructures. Nat. Commun. 8, 15505 (2017).
(
10.1038/ncomms15505
) / Nat. Commun. / Heat guiding and focusing using ballistic phonon transport in phononic nanostructures by Anufriev R. (2017) -
R. Yanagisawa, J. Maire, A. Ramiere, R. Anufriev, M. Nomura, Impact of limiting dimension on thermal conductivity of one-dimensional silicon phononic crystals. Appl. Phys. Lett. 110, 133108 (2017).
(
10.1063/1.4979080
) / Appl. Phys. Lett. / Impact of limiting dimension on thermal conductivity of one-dimensional silicon phononic crystals by Yanagisawa R. (2017) 10.1103/PhysRevB.91.205422
10.1103/PhysRevLett.110.095503
-
T. J. Isotalo, Y. L. Tian, I. J. Maasilta, Fabrication and modelling of three-dimensional sub-kelvin phononic crystals. J. Phys. Conf. Ser. 400, 52007 (2012).
(
10.1088/1742-6596/400/5/052007
) / J. Phys. Conf. Ser. / Fabrication and modelling of three-dimensional sub-kelvin phononic crystals by Isotalo T. J. (2012) -
X. Wang, B. Huang, Computational study of in-plane phonon transport in Si thin films. Sci. Rep. 4, 6399 (2014).
(
10.1038/srep06399
) / Sci. Rep. / Computational study of in-plane phonon transport in Si thin films by Wang X. (2014) -
A. Malhotra, M. Maldovan, Impact of phonon surface scattering on thermal energy distribution of Si and SiGe nanowires. Sci. Rep. 6, 25818 (2016).
(
10.1038/srep25818
) / Sci. Rep. / Impact of phonon surface scattering on thermal energy distribution of Si and SiGe nanowires by Malhotra A. (2016) -
A. M. Marconnet, T. Kodama, M. Asheghi, K. E. Goodson, Phonon conduction in periodically porous silicon nanobridges. Nanoscale Microscale Thermophys. Eng. 16, 199–219 (2012).
(
10.1080/15567265.2012.732195
) / Nanoscale Microscale Thermophys. Eng. / Phonon conduction in periodically porous silicon nanobridges by Marconnet A. M. (2012) - K. Yazawa, D. Kendig, P. E. Raad, P. L. Komarov, A. Shakouri, Understanding the thermoreflectance coefficient for high resolution thermal imaging of microelectronic devices. Electron. Cool. Mag. 19, 10–14 (2013). / Electron. Cool. Mag. / Understanding the thermoreflectance coefficient for high resolution thermal imaging of microelectronic devices by Yazawa K. (2013)
-
R. Anufriev, J. Maire, M. Nomura, Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures. Phys. Rev. B 93, 045411 (2015).
(
10.1103/PhysRevB.93.045411
) / Phys. Rev. B / Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures by Anufriev R. (2015) -
P. D. Desai, Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15, 967–983 (1986).
(
10.1063/1.555761
) / J. Phys. Chem. Ref. Data / Thermodynamic properties of iron and silicon by Desai P. D. (1986) -
R. Rosei, D. W. Lynch, Thermomodulation spectra of Al, Au, and Cu. Phys. Rev. B 5, 3883–3894 (1972).
(
10.1103/PhysRevB.5.3883
) / Phys. Rev. B / Thermomodulation spectra of Al, Au, and Cu by Rosei R. (1972) -
M. G. Burzo, P. L. Komarov, P. E. Raad, Minimizing the uncertainties associated with the measurement of thermal properties by the transient thermo-reflectance method. IEEE Trans. Compon. Packag. Technol. 28, 39–44 (2005).
(
10.1109/TCAPT.2004.843189
) / IEEE Trans. Compon. Packag. Technol. / Minimizing the uncertainties associated with the measurement of thermal properties by the transient thermo-reflectance method by Burzo M. G. (2005) -
J. Nakagawa, Y. Kage, T. Hori, J. Shiomi, M. Nomura, Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures. Appl. Phys. Lett. 107, 023104 (2015).
(
10.1063/1.4926653
) / Appl. Phys. Lett. / Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures by Nakagawa J. (2015) -
R. B. Peterson, Direct simulation of phonon-mediated heat transfer in a debye crystal. J. Heat Transfer 116, 815–822 (1994).
(
10.1115/1.2911452
) / J. Heat Transfer / Direct simulation of phonon-mediated heat transfer in a debye crystal by Peterson R. B. (1994) - C. Kittel Introduction to Solid State Physics (Wiley ed. 8 2004).
10.1103/PhysRev.132.2461
-
S. Mazumder, A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transfer 123, 749–759 (2001).
(
10.1115/1.1377018
) / J. Heat Transfer / Monte Carlo study of phonon transport in solid thin films including dispersion and polarization by Mazumder S. (2001) -
D. Lacroix, K. Joulain, D. Lemonnier, Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72, 064305 (2005).
(
10.1103/PhysRevB.72.064305
) / Phys. Rev. B / Monte Carlo transient phonon transport in silicon and germanium at nanoscales by Lacroix D. (2005) -
V. Jean, S. Fumeron, K. Termentzidis, S. Tutashkonko, D. Lacroix, Monte Carlo simulations of phonon transport in nanoporous silicon and germanium. J. Appl. Phys. 115, 024304 (2014).
(
10.1063/1.4861410
) / J. Appl. Phys. / Monte Carlo simulations of phonon transport in nanoporous silicon and germanium by Jean V. (2014) -
S. B. Soffer, Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38, 1710–1715 (1967).
(
10.1063/1.1709746
) / J. Appl. Phys. / Statistical model for the size effect in electrical conduction by Soffer S. B. (1967) -
A. A. Maznev, Boundary scattering of phonons: Specularity of a randomly rough surface in the small-perturbation limit. Phys. Rev. B 91, 134306 (2015).
(
10.1103/PhysRevB.91.134306
) / Phys. Rev. B / Boundary scattering of phonons: Specularity of a randomly rough surface in the small-perturbation limit by Maznev A. A. (2015) -
M. N. Luckyanova, J. A. Johnson, A. A. Maznev, J. Garg, A. Jandl, M. T. Bulsara, E. A. Fitzgerald, K. A. Nelson, G. Chen, Anisotropy of the thermal conductivity in GaAs/AlAs superlattices. Nano Lett. 13, 3973–3977 (2013).
(
10.1021/nl4001162
) / Nano Lett. / Anisotropy of the thermal conductivity in GaAs/AlAs superlattices by Luckyanova M. N. (2013)
@article{Maire_2017, title={Heat conduction tuning by wave nature of phonons}, volume={3}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1700027}, DOI={10.1126/sciadv.1700027}, number={8}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Maire, Jeremie and Anufriev, Roman and Yanagisawa, Ryoto and Ramiere, Aymeric and Volz, Sebastian and Nomura, Masahiro}, year={2017}, month=aug }