Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

Perfectly periodic structures modify the transport properties of heat carriers by interference effect and hinder heat transport.

Bibliography

Maire, J., Anufriev, R., Yanagisawa, R., Ramiere, A., Volz, S., & Nomura, M. (2017). Heat conduction tuning by wave nature of phonons. Science Advances, 3(8).

Authors 6
  1. Jeremie Maire (first)
  2. Roman Anufriev (additional)
  3. Ryoto Yanagisawa (additional)
  4. Aymeric Ramiere (additional)
  5. Sebastian Volz (additional)
  6. Masahiro Nomura (additional)
References 52 Referenced 187
  1. 10.1038/nphoton.2008.146
  2. J. D. Joannopoulos, P. Villeneuve, S. Fan, Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997). (10.1038/386143a0) / Nature / Photonic crystals: Putting a new twist on light by Joannopoulos J. D. (1997)
  3. 10.1038/nature12608
  4. E. L. Thomas, T. Gorishnyy, M. Maldovan, Colloidal crystals go hypersonic. Nat. Mater. 5, 773–774 (2006). (10.1038/nmat1744) / Nat. Mater. / Colloidal crystals go hypersonic by Thomas E. L. (2006)
  5. M. Maldovan, Phonon wave interference and thermal bandgap materials. Nat. Mater. 14, 667–674 (2015). (10.1038/nmat4308) / Nat. Mater. / Phonon wave interference and thermal bandgap materials by Maldovan M. (2015)
  6. 10.1103/PhysRevB.84.085204
  7. N. K. Ravichandran, A. J. Minnich, Coherent and incoherent thermal transport in nanomeshes. Phys. Rev. B 89, 205432 (2014). (10.1103/PhysRevB.89.205432) / Phys. Rev. B / Coherent and incoherent thermal transport in nanomeshes by Ravichandran N. K. (2014)
  8. B. Qiu, G. Chen, Z. Tian, Effects of aperiodicity and roughness on coherent heat conduction in superlattices. Nanoscale Microscale Thermophys. Eng. 19, 272–278 (2016). (10.1080/15567265.2015.1102186) / Nanoscale Microscale Thermophys. Eng. / Effects of aperiodicity and roughness on coherent heat conduction in superlattices by Qiu B. (2016)
  9. 10.1126/science.1225549
  10. 10.1038/nmat3826
  11. M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 25902 (2013). (10.1103/PhysRevLett.110.025902) / Phys. Rev. Lett. / Narrow low-frequency spectrum and heat management by thermocrystals by Maldovan M. (2013)
  12. A. M. Marconnet, M. Asheghi, K. E. Goodson, From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology. J. Heat Transfer 135, 061601 (2013). (10.1115/1.4023577) / J. Heat Transfer / From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology by Marconnet A. M. (2013)
  13. 10.1038/nnano.2010.149
  14. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. OlssonIII, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, I. El-Kady, Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107–112 (2011). (10.1021/nl102918q) / Nano Lett. / Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning by Hopkins P. E. (2011)
  15. S. Alaie, D. F. Goettler, M. Su, Z. C. Leseman, C. M. Reinke, I. El-Kady, Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nat. Commun. 6, 7228 (2015). (10.1038/ncomms8228) / Nat. Commun. / Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature by Alaie S. (2015)
  16. A. Jain, Y.-J. Yu, A. J. H. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Phys. Rev. B Condens. Matter Mater. Phys. 87, 195301 (2013). (10.1103/PhysRevB.87.195301) / Phys. Rev. B Condens. Matter Mater. Phys. / Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm by Jain A. (2013)
  17. A. J. Minnich, Advances in the measurement and computation of thermal phonon transport. J. Phys. Condens. Matter 27, 53202 (2015). (10.1088/0953-8984/27/5/053202) / J. Phys. Condens. Matter / Advances in the measurement and computation of thermal phonon transport by Minnich A. J. (2015)
  18. 10.1038/ncomms4435
  19. R. Anufriev, M. Nomura, Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types. Phys. Rev. B 93, 045410 (2016). (10.1103/PhysRevB.93.045410) / Phys. Rev. B / Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types by Anufriev R. (2016)
  20. B. L. Davis, M. I. Hussein, Nanophononic metamaterial: Thermal conductivity reduction by local resonance. Phys. Rev. Lett. 112, 055505 (2014). (10.1103/PhysRevLett.112.055505) / Phys. Rev. Lett. / Nanophononic metamaterial: Thermal conductivity reduction by local resonance by Davis B. L. (2014)
  21. H. Honarvar, M. I. Hussein, Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations. Phys. Rev. B 93, 081412 (2016). (10.1103/PhysRevB.93.081412) / Phys. Rev. B / Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations by Honarvar H. (2016)
  22. R. Anufriev, M. Nomura, Heat conduction engineering in pillar-based phononic crystals. Phys. Rev. B 95, 155432 (2017). (10.1103/PhysRevB.95.155432) / Phys. Rev. B / Heat conduction engineering in pillar-based phononic crystals by Anufriev R. (2017)
  23. I. J. Maasilta, T. A. Puurtinen, Y. Tian, Z. Geng, Phononic thermal conduction engineering for bolometers: From phononic crystals to radial casimir limit. J. Low Temp. Phys. 184, 211–216 (2016). (10.1007/s10909-015-1372-0) / J. Low Temp. Phys. / Phononic thermal conduction engineering for bolometers: From phononic crystals to radial casimir limit by Maasilta I. J. (2016)
  24. M. R. Wagner, B. Graczykowski, J. S. Reparaz, A. El Sachat, M. Sledzinska, F. Alzina, C. M. S. Torres, Two-dimensional phononic crystals: Disorder matters. Nano Lett. 16, 5661–5668 (2016). (10.1021/acs.nanolett.6b02305) / Nano Lett. / Two-dimensional phononic crystals: Disorder matters by Wagner M. R. (2016)
  25. J. Lee, W. Lee, G. Wehmeyer, S. Dhuey, D. L. Olynick, S. Cabrini, C. Dames, J. J. Urban, P. Yang, Investigation of phonon coherence backscattering using silicon nanomeshes. Nat. Commun. 8, 14054 (2017). (10.1038/ncomms14054) / Nat. Commun. / Investigation of phonon coherence backscattering using silicon nanomeshes by Lee J. (2017)
  26. A. Balandin, K. L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998). (10.1103/PhysRevB.58.1544) / Phys. Rev. B / Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well by Balandin A. (1998)
  27. J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932–2938 (2001). (10.1063/1.1345515) / J. Appl. Phys. / Phonon heat conduction in a semiconductor nanowire by Zou J. (2001)
  28. F. Kargar, B. Debnath, J.-P. Kakko, A. Säynätjoki, H. Lipsanen, D. L. Nika, R. K. Lake, A. A. Balandin, Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. Nat. Commun. 7, 13400 (2016). (10.1038/ncomms13400) / Nat. Commun. / Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires by Kargar F. (2016)
  29. F. Kargar, S. Ramirez, B. Debnath, H. Malekpour, R. K. Lake, A. A. Balandin, Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. Appl. Phys. Lett. 107, 171904 (2015). (10.1063/1.4934883) / Appl. Phys. Lett. / Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays by Kargar F. (2015)
  30. R. Anufriev, A. Ramiere, J. Maire, M. Nomura, Heat guiding and focusing using ballistic phonon transport in phononic nanostructures. Nat. Commun. 8, 15505 (2017). (10.1038/ncomms15505) / Nat. Commun. / Heat guiding and focusing using ballistic phonon transport in phononic nanostructures by Anufriev R. (2017)
  31. R. Yanagisawa, J. Maire, A. Ramiere, R. Anufriev, M. Nomura, Impact of limiting dimension on thermal conductivity of one-dimensional silicon phononic crystals. Appl. Phys. Lett. 110, 133108 (2017). (10.1063/1.4979080) / Appl. Phys. Lett. / Impact of limiting dimension on thermal conductivity of one-dimensional silicon phononic crystals by Yanagisawa R. (2017)
  32. 10.1103/PhysRevB.91.205422
  33. 10.1103/PhysRevLett.110.095503
  34. T. J. Isotalo, Y. L. Tian, I. J. Maasilta, Fabrication and modelling of three-dimensional sub-kelvin phononic crystals. J. Phys. Conf. Ser. 400, 52007 (2012). (10.1088/1742-6596/400/5/052007) / J. Phys. Conf. Ser. / Fabrication and modelling of three-dimensional sub-kelvin phononic crystals by Isotalo T. J. (2012)
  35. X. Wang, B. Huang, Computational study of in-plane phonon transport in Si thin films. Sci. Rep. 4, 6399 (2014). (10.1038/srep06399) / Sci. Rep. / Computational study of in-plane phonon transport in Si thin films by Wang X. (2014)
  36. A. Malhotra, M. Maldovan, Impact of phonon surface scattering on thermal energy distribution of Si and SiGe nanowires. Sci. Rep. 6, 25818 (2016). (10.1038/srep25818) / Sci. Rep. / Impact of phonon surface scattering on thermal energy distribution of Si and SiGe nanowires by Malhotra A. (2016)
  37. A. M. Marconnet, T. Kodama, M. Asheghi, K. E. Goodson, Phonon conduction in periodically porous silicon nanobridges. Nanoscale Microscale Thermophys. Eng. 16, 199–219 (2012). (10.1080/15567265.2012.732195) / Nanoscale Microscale Thermophys. Eng. / Phonon conduction in periodically porous silicon nanobridges by Marconnet A. M. (2012)
  38. K. Yazawa, D. Kendig, P. E. Raad, P. L. Komarov, A. Shakouri, Understanding the thermoreflectance coefficient for high resolution thermal imaging of microelectronic devices. Electron. Cool. Mag. 19, 10–14 (2013). / Electron. Cool. Mag. / Understanding the thermoreflectance coefficient for high resolution thermal imaging of microelectronic devices by Yazawa K. (2013)
  39. R. Anufriev, J. Maire, M. Nomura, Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures. Phys. Rev. B 93, 045411 (2015). (10.1103/PhysRevB.93.045411) / Phys. Rev. B / Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures by Anufriev R. (2015)
  40. P. D. Desai, Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15, 967–983 (1986). (10.1063/1.555761) / J. Phys. Chem. Ref. Data / Thermodynamic properties of iron and silicon by Desai P. D. (1986)
  41. R. Rosei, D. W. Lynch, Thermomodulation spectra of Al, Au, and Cu. Phys. Rev. B 5, 3883–3894 (1972). (10.1103/PhysRevB.5.3883) / Phys. Rev. B / Thermomodulation spectra of Al, Au, and Cu by Rosei R. (1972)
  42. M. G. Burzo, P. L. Komarov, P. E. Raad, Minimizing the uncertainties associated with the measurement of thermal properties by the transient thermo-reflectance method. IEEE Trans. Compon. Packag. Technol. 28, 39–44 (2005). (10.1109/TCAPT.2004.843189) / IEEE Trans. Compon. Packag. Technol. / Minimizing the uncertainties associated with the measurement of thermal properties by the transient thermo-reflectance method by Burzo M. G. (2005)
  43. J. Nakagawa, Y. Kage, T. Hori, J. Shiomi, M. Nomura, Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures. Appl. Phys. Lett. 107, 023104 (2015). (10.1063/1.4926653) / Appl. Phys. Lett. / Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures by Nakagawa J. (2015)
  44. R. B. Peterson, Direct simulation of phonon-mediated heat transfer in a debye crystal. J. Heat Transfer 116, 815–822 (1994). (10.1115/1.2911452) / J. Heat Transfer / Direct simulation of phonon-mediated heat transfer in a debye crystal by Peterson R. B. (1994)
  45. C. Kittel Introduction to Solid State Physics (Wiley ed. 8 2004).
  46. 10.1103/PhysRev.132.2461
  47. S. Mazumder, A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transfer 123, 749–759 (2001). (10.1115/1.1377018) / J. Heat Transfer / Monte Carlo study of phonon transport in solid thin films including dispersion and polarization by Mazumder S. (2001)
  48. D. Lacroix, K. Joulain, D. Lemonnier, Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72, 064305 (2005). (10.1103/PhysRevB.72.064305) / Phys. Rev. B / Monte Carlo transient phonon transport in silicon and germanium at nanoscales by Lacroix D. (2005)
  49. V. Jean, S. Fumeron, K. Termentzidis, S. Tutashkonko, D. Lacroix, Monte Carlo simulations of phonon transport in nanoporous silicon and germanium. J. Appl. Phys. 115, 024304 (2014). (10.1063/1.4861410) / J. Appl. Phys. / Monte Carlo simulations of phonon transport in nanoporous silicon and germanium by Jean V. (2014)
  50. S. B. Soffer, Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38, 1710–1715 (1967). (10.1063/1.1709746) / J. Appl. Phys. / Statistical model for the size effect in electrical conduction by Soffer S. B. (1967)
  51. A. A. Maznev, Boundary scattering of phonons: Specularity of a randomly rough surface in the small-perturbation limit. Phys. Rev. B 91, 134306 (2015). (10.1103/PhysRevB.91.134306) / Phys. Rev. B / Boundary scattering of phonons: Specularity of a randomly rough surface in the small-perturbation limit by Maznev A. A. (2015)
  52. M. N. Luckyanova, J. A. Johnson, A. A. Maznev, J. Garg, A. Jandl, M. T. Bulsara, E. A. Fitzgerald, K. A. Nelson, G. Chen, Anisotropy of the thermal conductivity in GaAs/AlAs superlattices. Nano Lett. 13, 3973–3977 (2013). (10.1021/nl4001162) / Nano Lett. / Anisotropy of the thermal conductivity in GaAs/AlAs superlattices by Luckyanova M. N. (2013)
Dates
Type When
Created 8 years ago (Aug. 4, 2017, 9 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 1:33 p.m.)
Indexed 2 weeks, 6 days ago (Aug. 2, 2025, 12:16 a.m.)
Issued 8 years ago (Aug. 4, 2017)
Published 8 years ago (Aug. 4, 2017)
Published Print 8 years ago (Aug. 4, 2017)
Funders 0

None

@article{Maire_2017, title={Heat conduction tuning by wave nature of phonons}, volume={3}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1700027}, DOI={10.1126/sciadv.1700027}, number={8}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Maire, Jeremie and Anufriev, Roman and Yanagisawa, Ryoto and Ramiere, Aymeric and Volz, Sebastian and Nomura, Masahiro}, year={2017}, month=aug }