Crossref
journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Authors
8
- Snehashis Choudhury (first)
- Charles Tai-Chieh Wan (additional)
- Wajdi I. Al Sadat (additional)
- Zhengyuan Tu (additional)
- Sampson Lau (additional)
- Michael J. Zachman (additional)
- Lena F. Kourkoutis (additional)
- Lynden A. Archer (additional)
References
68
Referenced
91
10.1038/nmat3191
-
A. C. Luntz, B. D. McCloskey, Nonaqueous Li–air batteries: A status report. Chem. Rev. 114, 11721–11750 (2014).
(
10.1021/cr500054y
) / Chem. Rev. / Nonaqueous Li–air batteries: A status report by Luntz A. C. (2014) -
G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).
(
10.1021/jz1005384
) / J. Phys. Chem. Lett. / Lithium-air battery: Promise and challenges by Girishkumar G. (2010) 10.1038/nenergy.2016.128
-
Y.-C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid State Lett. 13, A69–A72 (2010).
(
10.1149/1.3363047
) / Electrochem. Solid State Lett. / The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries by Lu Y.-C. (2010) -
B. D. Mccloskey, A. Valery, A. C. Luntz, S. R. Gowda, G. M. Wallraff, J. M. Garcia, T. Mori, L. E. Krupp, Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).
(
10.1021/jz401659f
) / J. Phys. Chem. Lett. / Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries by Mccloskey B. D. (2013) -
B. D. McCloskey, D. S. Bethune, R. M. Shelby, T. Mori, R. Scheffler, A. Speidel, M. Sherwood, A. C. Luntz, Limitations in rechargeability of Li-O2 batteries and possible origins. J. Phys. Chem. Lett. 3, 3043–3047 (2012).
(
10.1021/jz301359t
) / J. Phys. Chem. Lett. / Limitations in rechargeability of Li-O2 batteries and possible origins by McCloskey B. D. (2012) 10.1021/jz300243r
-
M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 12, 1050–1056 (2013).
(
10.1038/nmat3737
) / Nat. Mater. / A stable cathode for the aprotic Li–O2 battery by Ottakam Thotiyl M. M. (2013) -
S. Lau, L. A. Archer, Nucleation and growth of lithium peroxide in the Li–O2 battery. Nano Lett. 15, 5995–6002 (2015).
(
10.1021/acs.nanolett.5b02149
) / Nano Lett. / Nucleation and growth of lithium peroxide in the Li–O2 battery by Lau S. (2015) -
J. Højberg, B. D. McCloskey, J. Hjelm, T. Vegge, K. Johansen, P. Norby, A. C. Luntz, An electrochemical impedance spectroscopy investigation of the overpotentials in Li–O2 batteries. ACS Appl. Mater. Interfaces 7, 4039–4047 (2015).
(
10.1021/am5083254
) / ACS Appl. Mater. Interfaces / An electrochemical impedance spectroscopy investigation of the overpotentials in Li–O2 batteries by Højberg J. (2015) -
Y. Chen, S. A. Freunberger, Z. Peng, O. Fontaine, P. G. Bruce, Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).
(
10.1038/nchem.1646
) / Nat. Chem. / Charging a Li–O2 battery using a redox mediator by Chen Y. (2013) 10.1002/adma.201503169
-
B. J. Bergner, C. Hofmann, A. Schürmann, D. Schröder, K. Peppler, P. R. Schreiner, J. Janek, Understanding the fundamentals of redox mediators in Li–O2 batteries: A case study on nitroxides. Phys. Chem. Chem. Phys. 17, 31769–31779 (2015).
(
10.1039/C5CP04505C
) / Phys. Chem. Chem. Phys. / Understanding the fundamentals of redox mediators in Li–O2 batteries: A case study on nitroxides by Bergner B. J. (2015) 10.1126/science.aac7730
-
W.-J. Kwak, D. Hirshberg, D. Sharon, H.-J. Shin, M. Afri, J.-B. Park, A. Garsuch, F. F. Chesneau, A. A. Frimer, D. Aurbach, Y.-K. Sun, Understanding the behavior of Li–oxygen cells containing LiI. J. Mater. Chem. A 3, 8855–8864 (2015).
(
10.1039/C5TA01399B
) / J. Mater. Chem. A / Understanding the behavior of Li–oxygen cells containing LiI by Kwak W.-J. (2015) 10.1002/anie.201400711
-
D. Kundu, R. Black, B. Adams, L. F. Nazar, A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015).
(
10.1021/acscentsci.5b00267
) / ACS Cent. Sci. / A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries by Kundu D. (2015) 10.1021/ja501877e
-
W.-J. Kwak, D. Hirshberg, D. Sharon, M. Afri, A. A. Frimer, H.-G. Jung, D. Aurbach, Y.-K. Sun, Li–O2 cells with LiBr as an electrolyte and redox mediator. Energy Environ. Sci. 9, 2334–2345 (2016).
(
10.1039/C6EE00700G
) / Energy Environ. Sci. / Li–O2 cells with LiBr as an electrolyte and redox mediator by Kwak W.-J. (2016) -
T. Zhang, K. Liao, P. He, H. Zhou, A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 9, 1024–1030 (2016).
(
10.1039/C5EE02803E
) / Energy Environ. Sci. / A self-defense redox mediator for efficient lithium–O2 batteries by Zhang T. (2016) -
G. M. Veith, J. Nanda, L. H. Delmau, N. J. Dudney, Influence of lithium salts on the discharge chemistry of Li–air cells. J. Phys. Chem. Lett. 3, 1242–1247 (2012).
(
10.1021/jz300430s
) / J. Phys. Chem. Lett. / Influence of lithium salts on the discharge chemistry of Li–air cells by Veith G. M. (2012) -
R. Black, S. H. Oh, J.-H. Lee, T. Yim, B. Adams, L. F. Nazar, Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).
(
10.1021/ja2111543
) / J. Am. Chem. Soc. / Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization by Black R. (2012) 10.1038/nenergy.2016.114
10.1021/ja2021747
-
V. S. Bryantsev, J. Uddin, V. Giordani, W. Walker, D. Addison, G. V. Chase, The identification of stable solvents for nonaqueous rechargeable Li-air batteries. J. Electrochem. Soc. 160, A160–A171 (2013).
(
10.1149/2.027302jes
) / J. Electrochem. Soc. / The identification of stable solvents for nonaqueous rechargeable Li-air batteries by Bryantsev V. S. (2013) 10.1073/pnas.1505728112
-
L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J.-M. Tarascon, P. G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).
(
10.1038/nchem.2101
) / Nat. Chem. / The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries by Johnson L. (2014) -
A. Khetan, A. Luntz, V. Viswanathan, Trade-offs in capacity and rechargeability in nonaqueous Li–O2 batteries: Solution-driven growth versus nucleophilic stability. J. Phys. Chem. Lett. 6, 1254–1259 (2015).
(
10.1021/acs.jpclett.5b00324
) / J. Phys. Chem. Lett. / Trade-offs in capacity and rechargeability in nonaqueous Li–O2 batteries: Solution-driven growth versus nucleophilic stability by Khetan A. (2015) -
K. B. Knudsen, T. Vegge, B. D. McCloskey, J. Hjelm, An electrochemical impedance spectroscopy study on the effects of the surface- and solution-based mechanisms in Li-O2 cells. J. Electrochem. Soc. 163, A2065–A2071 (2016).
(
10.1149/2.1111609jes
) / J. Electrochem. Soc. / An electrochemical impedance spectroscopy study on the effects of the surface- and solution-based mechanisms in Li-O2 cells by Knudsen K. B. (2016) 10.1038/nchem.2132
-
A. Rosenman, R. Elazari, G. Salitra, E. Markevich, D. Aurbach, A. Garsuch, The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S battery systems. J. Electrochem. Soc. 162, A470–A473 (2015).
(
10.1149/2.0861503jes
) / J. Electrochem. Soc. / The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S battery systems by Rosenman A. (2015) 10.1016/j.electacta.2012.03.081
-
X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 196, 9839–9843 (2011).
(
10.1016/j.jpowsour.2011.08.027
) / J. Power Sources / Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte by Liang X. (2011) -
D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).
(
10.1149/1.3148721
) / J. Electrochem. Soc. / On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries by Aurbach D. (2009) -
W. Walker, V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase, D. Addison, A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013).
(
10.1021/ja311518s
) / J. Am. Chem. Soc. / A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte by Walker W. (2013) -
S. Choudhury, L. A. Archer Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2016).
(
10.1002/aelm.201500246
) / Adv. Electron. Mater. / Lithium fluoride additives for stable cycling of lithium batteries at high current densities by Choudhury S. (2016) 10.1038/ncomms10101
-
A. Agrawal, S. Choudhury, L. A. Archer, A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Adv. 5, 20800–20809 (2015).
(
10.1039/C5RA01031D
) / RSC Adv. / A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte by Agrawal A. (2015) 10.1038/35104644
-
T. Kashiwagi, F. Du, J. F. Douglas, K. I. Winey, R. H. Harris Jr, J. R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005).
(
10.1038/nmat1502
) / Nat. Mater. / Nanoparticle networks reduce the flammability of polymer nanocomposites by Kashiwagi T. (2005) -
Z. Tu, P. Nath, Y. Lu, M. D. Tikekar, L. A. Archer, Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015).
(
10.1021/acs.accounts.5b00427
) / Acc. Chem. Res. / Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries by Tu Z. (2015) -
X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).
(
10.1002/advs.201500213
) / Adv. Sci. / A review of solid electrolyte interphases on lithium metal anode by Cheng X.-B. (2016) 10.1149/2.085405jes
10.1126/sciadv.1600320
- Y. Ozhabes D. Gunceler T. A. Arias Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. arXiv:1504.05799 (2015).
- Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L. A. Archer, Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015). / Adv. Energy Mater. / Stable cycling of lithium metal batteries using high transference number electrolytes by Lu Y. (2015)
-
J. L. Schaefer, D. A. Yanga, L. A. Archer, High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013).
(
10.1021/cm303091j
) / Chem. Mater. / High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites by Schaefer J. L. (2013) 10.1038/nmat3602
-
K. P. C. Yao, D. G. Kwabi, R. A. Quinlan, A. N. Mansour, A. Grimaud, Y.-L. Lee, Y.-C. Lu, Y. Shao-Horn, Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 160, A824–A831 (2013).
(
10.1149/2.069306jes
) / J. Electrochem. Soc. / Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies by Yao K. P. C. (2013) -
Y.-C. Lu, E. J. Crumlin, G. M. Veith, J. R. Harding, E. Mutoro, L. Baggetto, N. J. Dudney, Z. Liu, Y. Shao-Horn, In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci. Rep. 2, 715 (2012).
(
10.1038/srep00715
) / Sci. Rep. / In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions by Lu Y.-C. (2012) -
D. Kundu, R. Black, E. J. Berg, L. F. Nazar, A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8, 1292–1298 (2015).
(
10.1039/C4EE02587C
) / Energy Environ. Sci. / A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries by Kundu D. (2015) - J. F. Moulder W. Stickle P. Sobol K. Bomben Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp. 1992).
-
Z. Zhang, J. Lu, R. S. Assary, P. Du, H.-H. Wang, Y.-K. Sun, Y. Qin, K. C. Lau, J. Greeley, P. C. Redfern, H. Iddir, L. A. Curtiss, K. Amine, Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535–25542 (2011).
(
10.1021/jp2087412
) / J. Phys. Chem. C / Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes by Zhang Z. (2011) -
J. Lu, H.-J. Jung, K. C. Lau, Z. Zhang, J. A. Schlueter, P. Du, R. S. Assary, J. Greeley, G. A. Ferguson, H.-H. Wang, J. Hassoun, H. Iddir, J. Zhou, L. Zuin, Y. Hu, Y.-K. Sun, B. Scrosati, L. A. Curtiss, K. Amine, Magnetism in lithium-oxygen discharge product. ChemSusChem 6, 1196–1202 (2013).
(
10.1002/cssc.201300223
) / ChemSusChem / Magnetism in lithium-oxygen discharge product by Lu J. (2013) 10.1038/ncomms11794
-
R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mater. Sci. Eng. B 192, 3–25 (2015).
(
10.1016/j.mseb.2014.11.014
) / Mater. Sci. Eng. B / Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches by Hausbrand R. (2015) -
S. Xiong, K. Xie, Y. Diao, X. Hong, Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta 83, 78–86 (2012).
(
10.1016/j.electacta.2012.07.118
) / Electrochim. Acta / Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries by Xiong S. (2012) -
Y. Wu, S. Fang, Y. Jiang, Effects of nitrogen on the carbon anode of a lithium secondary battery. Solid State Ionics 120, 117–123 (1999).
(
10.1016/S0167-2738(98)00158-1
) / Solid State Ionics / Effects of nitrogen on the carbon anode of a lithium secondary battery by Wu Y. (1999) -
S. M. Desai, S. S. Solanky, A. B. Mandale, K. Rathore, R. P. Singh, Controlled grafting of N-isopropyl acrylamide brushes onto self-standing isotactic polypropylene thin films: Surface initiated atom transfer radical polymerization. Polymer. 44, 7645–7649 (2003).
(
10.1016/j.polymer.2003.09.060
) / Polymer. / Controlled grafting of N-isopropyl acrylamide brushes onto self-standing isotactic polypropylene thin films: Surface initiated atom transfer radical polymerization by Desai S. M. (2003) - NIST X-ray Photoelectron Spectroscopy Database Version 4.1 (National Institute of Standards Technology 2012).
-
L. Ferrighi, I. Píš, T. H. Nguyen, M. Cattelan, S. Nappini, A. Basagni, M. Parravicini, A. Papagni, F. Sedona, E. Magnano, F. Bondino, C. Di Valentin, S. Agnoli, Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C–Br and C–H bonds. Chem. A Eur. J. 21, 5826–5834 (2015).
(
10.1002/chem.201405817
) / Chem. A Eur. J. / Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C–Br and C–H bonds by Ferrighi L. (2015) -
A. Basagni, L. Ferrighi, M. Cattelan, L. Nicolas, K. Handrup, L. Vaghi, A. Papagni, F. Sedona, C. Di Valentin, S. Agnoli, M. Sambi, On-surface photo-dissociation of C–Br bonds: Towards room temperature Ullmann coupling. Chem. Commun. 51, 12593–12596 (2015).
(
10.1039/C5CC04317D
) / Chem. Commun. / On-surface photo-dissociation of C–Br bonds: Towards room temperature Ullmann coupling by Basagni A. (2015) -
R. Gutzler, L. Cardenas, J. Lipton-Duffin, M. El Garah, L. E. Dinca, C. E. Szakacs, C. Fu, M. Gallagher, M. Vondráček, M. Rybachuk, D. F. Perepichka, F. Rosei, Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver. Nanoscale 6, 2660–2668 (2014).
(
10.1039/C3NR05710K
) / Nanoscale / Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver by Gutzler R. (2014) -
M. Di Giovannantonio, M. El Garah, J. Lipton-Duffin, V. Meunier, L. Cardenas, Y. Fagot Revurat, A. Cossaro, A. Verdini, D. F. Perepichka, F. Rosei, G. Contini, Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization. ACS Nano 7, 8190–8198 (2013).
(
10.1021/nn4035684
) / ACS Nano / Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization by Di Giovannantonio M. (2013) -
M. Jäckle, A. Groß, Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014).
(
10.1063/1.4901055
) / J. Chem. Phys. / Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth by Jäckle M. (2014) -
S.-Y. Ha, Y.-W. Lee, S. W. Woo, B. Koo, J.-S. Kim, J. Cho, K. T. Lee, N.-S. Choi, Magnesium(II) Bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 6, 4063–4073 (2014).
(
10.1021/am405619v
) / ACS Appl. Mater. Interfaces / Magnesium(II) Bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries by Ha S.-Y. (2014) -
S. Feng, D. Shi, F. Liu, L. Zheng, J. Nie, W. Feng, X. Huang, M. Armand, Z. Zhou, Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim. Acta 93, 254–263 (2013).
(
10.1016/j.electacta.2013.01.119
) / Electrochim. Acta / Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions by Feng S. (2013)
Dates
Type | When |
---|---|
Created | 8 years, 4 months ago (April 19, 2017, 8:50 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 3:10 p.m.) |
Indexed | 3 weeks, 4 days ago (July 30, 2025, 9:07 a.m.) |
Issued | 8 years, 4 months ago (April 7, 2017) |
Published | 8 years, 4 months ago (April 7, 2017) |
Published Print | 8 years, 4 months ago (April 7, 2017) |
Funders
1
Advanced Research Projects Agency - Energy
10.13039/100006133
Region: Americas
gov (National government)
Labels
2
- Advanced Research Projects Agency - Energy - U.S. Department of Energy
- ARPA-E
Awards
2
- DE-AR-0000750
- ID0ET2BG15340
@article{Choudhury_2017, title={Designer interphases for the lithium-oxygen electrochemical cell}, volume={3}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1602809}, DOI={10.1126/sciadv.1602809}, number={4}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Choudhury, Snehashis and Wan, Charles Tai-Chieh and Al Sadat, Wajdi I. and Tu, Zhengyuan and Lau, Sampson and Zachman, Michael J. and Kourkoutis, Lena F. and Archer, Lynden A.}, year={2017}, month=apr }