Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

A demonstration of stable lithium-oxygen batteries based on high–donor number liquid electrolytes and an ionomer-protected anode.

Bibliography

Choudhury, S., Wan, C. T.-C., Al Sadat, W. I., Tu, Z., Lau, S., Zachman, M. J., Kourkoutis, L. F., & Archer, L. A. (2017). Designer interphases for the lithium-oxygen electrochemical cell. Science Advances, 3(4).

Authors 8
  1. Snehashis Choudhury (first)
  2. Charles Tai-Chieh Wan (additional)
  3. Wajdi I. Al Sadat (additional)
  4. Zhengyuan Tu (additional)
  5. Sampson Lau (additional)
  6. Michael J. Zachman (additional)
  7. Lena F. Kourkoutis (additional)
  8. Lynden A. Archer (additional)
References 68 Referenced 91
  1. 10.1038/nmat3191
  2. A. C. Luntz, B. D. McCloskey, Nonaqueous Li–air batteries: A status report. Chem. Rev. 114, 11721–11750 (2014). (10.1021/cr500054y) / Chem. Rev. / Nonaqueous Li–air batteries: A status report by Luntz A. C. (2014)
  3. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010). (10.1021/jz1005384) / J. Phys. Chem. Lett. / Lithium-air battery: Promise and challenges by Girishkumar G. (2010)
  4. 10.1038/nenergy.2016.128
  5. Y.-C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid State Lett. 13, A69–A72 (2010). (10.1149/1.3363047) / Electrochem. Solid State Lett. / The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries by Lu Y.-C. (2010)
  6. B. D. Mccloskey, A. Valery, A. C. Luntz, S. R. Gowda, G. M. Wallraff, J. M. Garcia, T. Mori, L. E. Krupp, Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013). (10.1021/jz401659f) / J. Phys. Chem. Lett. / Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries by Mccloskey B. D. (2013)
  7. B. D. McCloskey, D. S. Bethune, R. M. Shelby, T. Mori, R. Scheffler, A. Speidel, M. Sherwood, A. C. Luntz, Limitations in rechargeability of Li-O2 batteries and possible origins. J. Phys. Chem. Lett. 3, 3043–3047 (2012). (10.1021/jz301359t) / J. Phys. Chem. Lett. / Limitations in rechargeability of Li-O2 batteries and possible origins by McCloskey B. D. (2012)
  8. 10.1021/jz300243r
  9. M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 12, 1050–1056 (2013). (10.1038/nmat3737) / Nat. Mater. / A stable cathode for the aprotic Li–O2 battery by Ottakam Thotiyl M. M. (2013)
  10. S. Lau, L. A. Archer, Nucleation and growth of lithium peroxide in the Li–O2 battery. Nano Lett. 15, 5995–6002 (2015). (10.1021/acs.nanolett.5b02149) / Nano Lett. / Nucleation and growth of lithium peroxide in the Li–O2 battery by Lau S. (2015)
  11. J. Højberg, B. D. McCloskey, J. Hjelm, T. Vegge, K. Johansen, P. Norby, A. C. Luntz, An electrochemical impedance spectroscopy investigation of the overpotentials in Li–O2 batteries. ACS Appl. Mater. Interfaces 7, 4039–4047 (2015). (10.1021/am5083254) / ACS Appl. Mater. Interfaces / An electrochemical impedance spectroscopy investigation of the overpotentials in Li–O2 batteries by Højberg J. (2015)
  12. Y. Chen, S. A. Freunberger, Z. Peng, O. Fontaine, P. G. Bruce, Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013). (10.1038/nchem.1646) / Nat. Chem. / Charging a Li–O2 battery using a redox mediator by Chen Y. (2013)
  13. 10.1002/adma.201503169
  14. B. J. Bergner, C. Hofmann, A. Schürmann, D. Schröder, K. Peppler, P. R. Schreiner, J. Janek, Understanding the fundamentals of redox mediators in Li–O2 batteries: A case study on nitroxides. Phys. Chem. Chem. Phys. 17, 31769–31779 (2015). (10.1039/C5CP04505C) / Phys. Chem. Chem. Phys. / Understanding the fundamentals of redox mediators in Li–O2 batteries: A case study on nitroxides by Bergner B. J. (2015)
  15. 10.1126/science.aac7730
  16. W.-J. Kwak, D. Hirshberg, D. Sharon, H.-J. Shin, M. Afri, J.-B. Park, A. Garsuch, F. F. Chesneau, A. A. Frimer, D. Aurbach, Y.-K. Sun, Understanding the behavior of Li–oxygen cells containing LiI. J. Mater. Chem. A 3, 8855–8864 (2015). (10.1039/C5TA01399B) / J. Mater. Chem. A / Understanding the behavior of Li–oxygen cells containing LiI by Kwak W.-J. (2015)
  17. 10.1002/anie.201400711
  18. D. Kundu, R. Black, B. Adams, L. F. Nazar, A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015). (10.1021/acscentsci.5b00267) / ACS Cent. Sci. / A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries by Kundu D. (2015)
  19. 10.1021/ja501877e
  20. W.-J. Kwak, D. Hirshberg, D. Sharon, M. Afri, A. A. Frimer, H.-G. Jung, D. Aurbach, Y.-K. Sun, Li–O2 cells with LiBr as an electrolyte and redox mediator. Energy Environ. Sci. 9, 2334–2345 (2016). (10.1039/C6EE00700G) / Energy Environ. Sci. / Li–O2 cells with LiBr as an electrolyte and redox mediator by Kwak W.-J. (2016)
  21. T. Zhang, K. Liao, P. He, H. Zhou, A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 9, 1024–1030 (2016). (10.1039/C5EE02803E) / Energy Environ. Sci. / A self-defense redox mediator for efficient lithium–O2 batteries by Zhang T. (2016)
  22. G. M. Veith, J. Nanda, L. H. Delmau, N. J. Dudney, Influence of lithium salts on the discharge chemistry of Li–air cells. J. Phys. Chem. Lett. 3, 1242–1247 (2012). (10.1021/jz300430s) / J. Phys. Chem. Lett. / Influence of lithium salts on the discharge chemistry of Li–air cells by Veith G. M. (2012)
  23. R. Black, S. H. Oh, J.-H. Lee, T. Yim, B. Adams, L. F. Nazar, Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012). (10.1021/ja2111543) / J. Am. Chem. Soc. / Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization by Black R. (2012)
  24. 10.1038/nenergy.2016.114
  25. 10.1021/ja2021747
  26. V. S. Bryantsev, J. Uddin, V. Giordani, W. Walker, D. Addison, G. V. Chase, The identification of stable solvents for nonaqueous rechargeable Li-air batteries. J. Electrochem. Soc. 160, A160–A171 (2013). (10.1149/2.027302jes) / J. Electrochem. Soc. / The identification of stable solvents for nonaqueous rechargeable Li-air batteries by Bryantsev V. S. (2013)
  27. 10.1073/pnas.1505728112
  28. L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J.-M. Tarascon, P. G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014). (10.1038/nchem.2101) / Nat. Chem. / The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries by Johnson L. (2014)
  29. A. Khetan, A. Luntz, V. Viswanathan, Trade-offs in capacity and rechargeability in nonaqueous Li–O2 batteries: Solution-driven growth versus nucleophilic stability. J. Phys. Chem. Lett. 6, 1254–1259 (2015). (10.1021/acs.jpclett.5b00324) / J. Phys. Chem. Lett. / Trade-offs in capacity and rechargeability in nonaqueous Li–O2 batteries: Solution-driven growth versus nucleophilic stability by Khetan A. (2015)
  30. K. B. Knudsen, T. Vegge, B. D. McCloskey, J. Hjelm, An electrochemical impedance spectroscopy study on the effects of the surface- and solution-based mechanisms in Li-O2 cells. J. Electrochem. Soc. 163, A2065–A2071 (2016). (10.1149/2.1111609jes) / J. Electrochem. Soc. / An electrochemical impedance spectroscopy study on the effects of the surface- and solution-based mechanisms in Li-O2 cells by Knudsen K. B. (2016)
  31. 10.1038/nchem.2132
  32. A. Rosenman, R. Elazari, G. Salitra, E. Markevich, D. Aurbach, A. Garsuch, The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S battery systems. J. Electrochem. Soc. 162, A470–A473 (2015). (10.1149/2.0861503jes) / J. Electrochem. Soc. / The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S battery systems by Rosenman A. (2015)
  33. 10.1016/j.electacta.2012.03.081
  34. X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 196, 9839–9843 (2011). (10.1016/j.jpowsour.2011.08.027) / J. Power Sources / Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte by Liang X. (2011)
  35. D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009). (10.1149/1.3148721) / J. Electrochem. Soc. / On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries by Aurbach D. (2009)
  36. W. Walker, V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase, D. Addison, A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013). (10.1021/ja311518s) / J. Am. Chem. Soc. / A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte by Walker W. (2013)
  37. S. Choudhury, L. A. Archer Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2016). (10.1002/aelm.201500246) / Adv. Electron. Mater. / Lithium fluoride additives for stable cycling of lithium batteries at high current densities by Choudhury S. (2016)
  38. 10.1038/ncomms10101
  39. A. Agrawal, S. Choudhury, L. A. Archer, A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Adv. 5, 20800–20809 (2015). (10.1039/C5RA01031D) / RSC Adv. / A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte by Agrawal A. (2015)
  40. 10.1038/35104644
  41. T. Kashiwagi, F. Du, J. F. Douglas, K. I. Winey, R. H. Harris Jr, J. R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005). (10.1038/nmat1502) / Nat. Mater. / Nanoparticle networks reduce the flammability of polymer nanocomposites by Kashiwagi T. (2005)
  42. Z. Tu, P. Nath, Y. Lu, M. D. Tikekar, L. A. Archer, Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015). (10.1021/acs.accounts.5b00427) / Acc. Chem. Res. / Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries by Tu Z. (2015)
  43. X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). (10.1002/advs.201500213) / Adv. Sci. / A review of solid electrolyte interphases on lithium metal anode by Cheng X.-B. (2016)
  44. 10.1149/2.085405jes
  45. 10.1126/sciadv.1600320
  46. Y. Ozhabes D. Gunceler T. A. Arias Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. arXiv:1504.05799 (2015).
  47. Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L. A. Archer, Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015). / Adv. Energy Mater. / Stable cycling of lithium metal batteries using high transference number electrolytes by Lu Y. (2015)
  48. J. L. Schaefer, D. A. Yanga, L. A. Archer, High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013). (10.1021/cm303091j) / Chem. Mater. / High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites by Schaefer J. L. (2013)
  49. 10.1038/nmat3602
  50. K. P. C. Yao, D. G. Kwabi, R. A. Quinlan, A. N. Mansour, A. Grimaud, Y.-L. Lee, Y.-C. Lu, Y. Shao-Horn, Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 160, A824–A831 (2013). (10.1149/2.069306jes) / J. Electrochem. Soc. / Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies by Yao K. P. C. (2013)
  51. Y.-C. Lu, E. J. Crumlin, G. M. Veith, J. R. Harding, E. Mutoro, L. Baggetto, N. J. Dudney, Z. Liu, Y. Shao-Horn, In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci. Rep. 2, 715 (2012). (10.1038/srep00715) / Sci. Rep. / In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions by Lu Y.-C. (2012)
  52. D. Kundu, R. Black, E. J. Berg, L. F. Nazar, A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8, 1292–1298 (2015). (10.1039/C4EE02587C) / Energy Environ. Sci. / A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries by Kundu D. (2015)
  53. J. F. Moulder W. Stickle P. Sobol K. Bomben Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp. 1992).
  54. Z. Zhang, J. Lu, R. S. Assary, P. Du, H.-H. Wang, Y.-K. Sun, Y. Qin, K. C. Lau, J. Greeley, P. C. Redfern, H. Iddir, L. A. Curtiss, K. Amine, Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535–25542 (2011). (10.1021/jp2087412) / J. Phys. Chem. C / Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes by Zhang Z. (2011)
  55. J. Lu, H.-J. Jung, K. C. Lau, Z. Zhang, J. A. Schlueter, P. Du, R. S. Assary, J. Greeley, G. A. Ferguson, H.-H. Wang, J. Hassoun, H. Iddir, J. Zhou, L. Zuin, Y. Hu, Y.-K. Sun, B. Scrosati, L. A. Curtiss, K. Amine, Magnetism in lithium-oxygen discharge product. ChemSusChem 6, 1196–1202 (2013). (10.1002/cssc.201300223) / ChemSusChem / Magnetism in lithium-oxygen discharge product by Lu J. (2013)
  56. 10.1038/ncomms11794
  57. R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mater. Sci. Eng. B 192, 3–25 (2015). (10.1016/j.mseb.2014.11.014) / Mater. Sci. Eng. B / Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches by Hausbrand R. (2015)
  58. S. Xiong, K. Xie, Y. Diao, X. Hong, Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta 83, 78–86 (2012). (10.1016/j.electacta.2012.07.118) / Electrochim. Acta / Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries by Xiong S. (2012)
  59. Y. Wu, S. Fang, Y. Jiang, Effects of nitrogen on the carbon anode of a lithium secondary battery. Solid State Ionics 120, 117–123 (1999). (10.1016/S0167-2738(98)00158-1) / Solid State Ionics / Effects of nitrogen on the carbon anode of a lithium secondary battery by Wu Y. (1999)
  60. S. M. Desai, S. S. Solanky, A. B. Mandale, K. Rathore, R. P. Singh, Controlled grafting of N-isopropyl acrylamide brushes onto self-standing isotactic polypropylene thin films: Surface initiated atom transfer radical polymerization. Polymer. 44, 7645–7649 (2003). (10.1016/j.polymer.2003.09.060) / Polymer. / Controlled grafting of N-isopropyl acrylamide brushes onto self-standing isotactic polypropylene thin films: Surface initiated atom transfer radical polymerization by Desai S. M. (2003)
  61. NIST X-ray Photoelectron Spectroscopy Database Version 4.1 (National Institute of Standards Technology 2012).
  62. L. Ferrighi, I. Píš, T. H. Nguyen, M. Cattelan, S. Nappini, A. Basagni, M. Parravicini, A. Papagni, F. Sedona, E. Magnano, F. Bondino, C. Di Valentin, S. Agnoli, Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C–Br and C–H bonds. Chem. A Eur. J. 21, 5826–5834 (2015). (10.1002/chem.201405817) / Chem. A Eur. J. / Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C–Br and C–H bonds by Ferrighi L. (2015)
  63. A. Basagni, L. Ferrighi, M. Cattelan, L. Nicolas, K. Handrup, L. Vaghi, A. Papagni, F. Sedona, C. Di Valentin, S. Agnoli, M. Sambi, On-surface photo-dissociation of C–Br bonds: Towards room temperature Ullmann coupling. Chem. Commun. 51, 12593–12596 (2015). (10.1039/C5CC04317D) / Chem. Commun. / On-surface photo-dissociation of C–Br bonds: Towards room temperature Ullmann coupling by Basagni A. (2015)
  64. R. Gutzler, L. Cardenas, J. Lipton-Duffin, M. El Garah, L. E. Dinca, C. E. Szakacs, C. Fu, M. Gallagher, M. Vondráček, M. Rybachuk, D. F. Perepichka, F. Rosei, Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver. Nanoscale 6, 2660–2668 (2014). (10.1039/C3NR05710K) / Nanoscale / Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver by Gutzler R. (2014)
  65. M. Di Giovannantonio, M. El Garah, J. Lipton-Duffin, V. Meunier, L. Cardenas, Y. Fagot Revurat, A. Cossaro, A. Verdini, D. F. Perepichka, F. Rosei, G. Contini, Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization. ACS Nano 7, 8190–8198 (2013). (10.1021/nn4035684) / ACS Nano / Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization by Di Giovannantonio M. (2013)
  66. M. Jäckle, A. Groß, Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014). (10.1063/1.4901055) / J. Chem. Phys. / Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth by Jäckle M. (2014)
  67. S.-Y. Ha, Y.-W. Lee, S. W. Woo, B. Koo, J.-S. Kim, J. Cho, K. T. Lee, N.-S. Choi, Magnesium(II) Bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 6, 4063–4073 (2014). (10.1021/am405619v) / ACS Appl. Mater. Interfaces / Magnesium(II) Bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries by Ha S.-Y. (2014)
  68. S. Feng, D. Shi, F. Liu, L. Zheng, J. Nie, W. Feng, X. Huang, M. Armand, Z. Zhou, Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim. Acta 93, 254–263 (2013). (10.1016/j.electacta.2013.01.119) / Electrochim. Acta / Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions by Feng S. (2013)
Dates
Type When
Created 8 years, 4 months ago (April 19, 2017, 8:50 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 3:10 p.m.)
Indexed 3 weeks, 4 days ago (July 30, 2025, 9:07 a.m.)
Issued 8 years, 4 months ago (April 7, 2017)
Published 8 years, 4 months ago (April 7, 2017)
Published Print 8 years, 4 months ago (April 7, 2017)
Funders 1
  1. Advanced Research Projects Agency - Energy 10.13039/100006133

    Region: Americas

    gov (National government)

    Labels2
    1. Advanced Research Projects Agency - Energy - U.S. Department of Energy
    2. ARPA-E
    Awards2
    1. DE-AR-0000750
    2. ID0ET2BG15340

@article{Choudhury_2017, title={Designer interphases for the lithium-oxygen electrochemical cell}, volume={3}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1602809}, DOI={10.1126/sciadv.1602809}, number={4}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Choudhury, Snehashis and Wan, Charles Tai-Chieh and Al Sadat, Wajdi I. and Tu, Zhengyuan and Lau, Sampson and Zachman, Michael J. and Kourkoutis, Lena F. and Archer, Lynden A.}, year={2017}, month=apr }