Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

Unusual enhancement of cryogenic thermopower manifests itself around the critical point of polar order in a metal.

Bibliography

Sakai, H., Ikeura, K., Bahramy, M. S., Ogawa, N., Hashizume, D., Fujioka, J., Tokura, Y., & Ishiwata, S. (2016). Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe 2. Science Advances, 2(11).

Authors 8
  1. Hideaki Sakai (first)
  2. Koji Ikeura (additional)
  3. Mohammad Saeed Bahramy (additional)
  4. Naoki Ogawa (additional)
  5. Daisuke Hashizume (additional)
  6. Jun Fujioka (additional)
  7. Yoshinori Tokura (additional)
  8. Shintaro Ishiwata (additional)
References 47 Referenced 77
  1. P. W. Anderson, E. I. Blount, Symmetry considerations on martensitic transformations: “Ferroelectric” metals?. Phys. Rev. Lett. 14, 217–219 (1965). (10.1103/PhysRevLett.14.217) / Phys. Rev. Lett. / Symmetry considerations on martensitic transformations: “Ferroelectric” metals? by Anderson P. W. (1965)
  2. S. S. Saxena, P. Monthoux, Superconductivity: Symmetry not required. Nature 427, 799 (2004). (10.1038/427799a) / Nature / Superconductivity: Symmetry not required by Saxena S. S. (2004)
  3. V. M. Edelstein, Inverse faraday effect in conducting crystals caused by a broken mirror symmetry. Phys. Rev. Lett. 80, 5766–5769 (1998). (10.1103/PhysRevLett.80.5766) / Phys. Rev. Lett. / Inverse faraday effect in conducting crystals caused by a broken mirror symmetry by Edelstein V. M. (1998)
  4. D. Puggioni, J. M. Rondinelli, Designing a robustly metallic noncenstrosymmetric ruthenate oxide with large thermopower anisotropy. Nat. Commun. 5, 3432 (2014). (10.1038/ncomms4432) / Nat. Commun. / Designing a robustly metallic noncenstrosymmetric ruthenate oxide with large thermopower anisotropy by Puggioni D. (2014)
  5. Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu, M. Arai, Y. Shirako, M. Akaogi, N. Wang, K. Yamaura, A. T. Boothroyd, A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013). (10.1038/nmat3754) / Nat. Mater. / A ferroelectric-like structural transition in a metal by Shi Y. (2013)
  6. H. M. Liu, Y. P. Du, Y. L. Xie, J.-M. Liu, C.-G. Duan, X. Wan, Metallic ferroelectricity induced by anisotropic unscreened Coulomb interaction in LiOsO3. Phys. Rev. B 91, 064104 (2015). (10.1103/PhysRevB.91.064104) / Phys. Rev. B / Metallic ferroelectricity induced by anisotropic unscreened Coulomb interaction in LiOsO3 by Liu H. M. (2015)
  7. I. A. Sergienko, V. Keppens, M. McGuire, R. Jin, J. He, S. H. Curnoe, B. C. Sales, P. Blaha, D. J. Singh, K. Schwarz, D. Mandrus, Metallic “ferroelectricity” in the pyrochlore Cd2Re2O7. Phys. Rev. Lett. 92, 065501 (2004). (10.1103/PhysRevLett.92.065501) / Phys. Rev. Lett. / Metallic “ferroelectricity” in the pyrochlore Cd2Re2O7 by Sergienko I. A. (2004)
  8. T. Kolodiazhnyi, M. Tachibana, H. Kawaji, J. Hwang, E. Takayama-Muromachi, Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition. Phys. Rev. Lett. 104, 147602 (2010). (10.1103/PhysRevLett.104.147602) / Phys. Rev. Lett. / Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition by Kolodiazhnyi T. (2010)
  9. J. Fujioka, A. Doi, D. Okuyama, D. Morikawa, T. Arima, K. N. Okada, Y. Kaneko, T. Fukuda, H. Uchiyama, D. Ishikawa, A. Q. R. Baron, K. Kato, M. Takata, Y. Tokura, Ferroelectric-like metallic state in electron doped BaTiO3. Sci. Rep. 5, 13207 (2015). (10.1038/srep13207) / Sci. Rep. / Ferroelectric-like metallic state in electron doped BaTiO3 by Fujioka J. (2015)
  10. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 6, 699–712 (2012). (10.1038/nnano.2012.193) / Nat. Nanotechnol. / Electronics and optoelectronics of two-dimensional transition metal dichalcogenides by Wang Q. H. (2012)
  11. 10.1038/nchem.1589
  12. H. P. Hughes, R. H. Friend, Electrical resistivity anomaly in β-MoTe2. J. Phys. C Solid State Phys. 11, L103–L105 (1978). (10.1088/0022-3719/11/3/004) / J. Phys. C Solid State Phys. / Electrical resistivity anomaly in β-MoTe2 by Hughes H. P. (1978)
  13. M. B. Vellinga, R. de Jonge, C. Haas, Semiconductor to metal transition in MoTe2. J. Solid State Chem. 2, 299–302 (1970). (10.1016/0022-4596(70)90085-X) / J. Solid State Chem. / Semiconductor to metal transition in MoTe2 by Vellinga M. B. (1970)
  14. T. Zandt, H. Dwelk, C. Janowitiz, R. Manzke, Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2. J. Alloys Compd. 442, 216–218 (2007). (10.1016/j.jallcom.2006.09.157) / J. Alloys Compd. / Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2 by Zandt T. (2007)
  15. K. Ikeura, H. Sakai, M. S. Bahramy, S. Ishiwata, Rich structural phase diagram and thermoelectric properties of layered tellurides Mo1−xNbxTe2. APL Mater. 3, 041514 (2015). (10.1063/1.4913967) / APL Mater. / Rich structural phase diagram and thermoelectric properties of layered tellurides Mo1−x Nb x Te2 by Ikeura K. (2015)
  16. S. Kabashima, Electrical properties of tungsten-ditelluride WTe2. J. Phys. Soc. Jpn. 21, 945–948 (1966). (10.1143/JPSJ.21.945) / J. Phys. Soc. Jpn. / Electrical properties of tungsten-ditelluride WTe2 by Kabashima S. (1966)
  17. 10.1038/nature13763
  18. D. H. Keum, S. Cho, J. H. Kim, D.-H. Choe, H.-J. Sung, M. Kan, H. Kang, J.-Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, Y. H. Lee, Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015). (10.1038/nphys3314) / Nat. Phys. / Bandgap opening in few-layered monoclinic MoTe2 by Keum D. H. (2015)
  19. 10.1038/ncomms8804
  20. X.-C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, Y. Zhang, Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 6, 7805 (2015). (10.1038/ncomms8805) / Nat. Commun. / Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride by Pan X.-C. (2015)
  21. 10.1038/ncomms11038
  22. 10.1038/nature15768
  23. Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, B. Yan, Prediction of the Weyl semimetal in the orthorhombic MoTe2. Phys. Rev. B 92, 161107(R) (2015). (10.1103/PhysRevB.92.161107) / Phys. Rev. B / Prediction of the Weyl semimetal in the orthorhombic MoTe2 by Sun Y. (2015)
  24. 10.1126/science.1256815
  25. B. E. Brown, The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966). (10.1107/S0365110X66000513) / Acta Crystallogr. / The crystal structures of WTe2 and high-temperature MoTe2 by Brown B. E. (1966)
  26. W. G. Dawson, D. W. Bullett, Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C Solid State Phys. 20, 6159–6174 (1987). (10.1088/0022-3719/20/36/017) / J. Phys. C Solid State Phys. / Electronic structure and crystallography of MoTe2 and WTe2 by Dawson W. G. (1987)
  27. T.-R. Chang, S.-Y. Xu, G. Chang, C.-C. Lee, S.-M. Huang, B. Wang, G. Bian, H. Zheng, D. S. Sanchez, I. Belopolski, N. Alidoust, M. Neupane, A. Bansil, H.-T. Jeng, H. Lin, M. Zahid Hasan, Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2. Nat. Commun. 7, 10639 (2016). (10.1038/ncomms10639) / Nat. Commun. / Prediction of an arc-tunable Weyl Fermion metallic state in Mo x W1−x Te2 by Chang T.-R. (2016)
  28. R. Clarke, E. Marseglia, H. P. Hughes, A low-temperature structural phase transition in β-MoTe2. Philos. Mag. 38, 121–126 (1978). (10.1080/13642817808245670) / Philos. Mag. / A low-temperature structural phase transition in β-MoTe2 by Clarke R. (1978)
  29. C. Manolikas, J. van Landuyt, S. Amelinckx, Electron microscopy and electron diffraction study of the domain structures, the dislocation fine structure, and the phase transformations in β-MoTe2. Phys. Status Solidi A 53, 327–338 (1979). (10.1002/pssa.2210530138) / Phys. Status Solidi A / Electron microscopy and electron diffraction study of the domain structures, the dislocation fine structure, and the phase transformations in β-MoTe2 by Manolikas C. (1979)
  30. S.-Y. Chen, T. Goldstein, D. Venkataraman, A. Ramasubramaniam, J. Yan, Activation of new Raman modes by inversion symmetry breaking in type II Weyl semimetal candidate T’-MoTe2. Nano Lett. 16, 5852–5860 (2016). (10.1021/acs.nanolett.6b02666) / Nano Lett. / Activation of new Raman modes by inversion symmetry breaking in type II Weyl semimetal candidate T’-MoTe2 by Chen S.-Y. (2016)
  31. K. Zhang, C. Bao, Q. Gu, X. Ren, H. Zhang, K. Deng, Y. Wu, Y. Li, J. Feng, S. Zhou, Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2. Mater. Sci. arXiv:1606.05071 (2016). / Mater. Sci. / Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2 by Zhang K. (2016)
  32. P. Sun, F. Steglich, Nernst effect: Evidence of local Kondo scattering in heavy fermions. Phys. Rev. Lett. 110, 216408 (2013). (10.1103/PhysRevLett.110.216408) / Phys. Rev. Lett. / Nernst effect: Evidence of local Kondo scattering in heavy fermions by Sun P. (2013)
  33. V. Zlatić, R. Monnier, J. K. Freericks, K. W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems. Phys. Rev. B 76, 085122 (2007). (10.1103/PhysRevB.76.085122) / Phys. Rev. B / Relationship between the thermopower and entropy of strongly correlated electron systems by Zlatić V. (2007)
  34. 10.1038/ncomms8475
  35. H. Liu, X. Yuan, P. Lu, X. Shi, F. Xu, Y. He, Y. Tang, S. Bai, W. Zhang, L. Chen, Y. Lin, L. Shi, H. Lin, X. Gao, X. Zhang, H. Chi, C. Uher, Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−xIx. Adv. Mater. 25, 6607–6612 (2013). (10.1002/adma.201302660) / Adv. Mater. / Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−x I x by Liu H. (2013)
  36. M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal Jr, R. J. Cava, N. P. Ong, Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nat. Mater. 5, 537–540 (2006). (10.1038/nmat1669) / Nat. Mater. / Large enhancement of the thermopower in Na x CoO2 at high Na doping by Lee M. (2006)
  37. M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, SIR2004: An improved tool for crystal structure determination and refinement. J. Appl. Cryst. 38, 381–388 (2005). (10.1107/S002188980403225X) / J. Appl. Cryst. / SIR2004: An improved tool for crystal structure determination and refinement by Burla M. C. (2005)
  38. G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. C71, 3–8 (2015). / Acta Crystallogr. / Crystal structure refinement with SHELXL by Sheldrick G. M. (2015)
  39. P. Blaha K. Schwarz G. Madsen D. Kvasnicka J. Luitz WIEN2k software package; www.wien2k.at.
  40. 10.1103/PhysRevB.65.035109
  41. A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari, wannier90: A tool for obtaining maximally localized Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008). (10.1016/j.cpc.2007.11.016) / Comput. Phys. Commun. / wannier90: A tool for obtaining maximally localized Wannier functions by Mostofi A. A. (2008)
  42. 10.1016/j.cpc.2010.08.005
  43. Y. Le Page, Computer derivation of the symmetry elements implied in a structure description. J. Appl. Cryst. 20, 264–269 (1987); Y. Le Page, MISSYM1.1—A flexible new release. J. Appl. Cryst. 21, 983–984 (1988). (10.1107/S0021889887086710) / J. Appl. Cryst. / Computer derivation of the symmetry elements implied in a structure description by Le Page Y. (1987)
  44. A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. D65, 148–155 (2009). / Acta Crystallogr. / Structure validation in chemical crystallography by Spek A. L. (2009)
  45. E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, T. Rasing, Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation. Phys. Rev. Lett. 85, 3664–3667 (2000). (10.1103/PhysRevLett.85.3664) / Phys. Rev. Lett. / Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation by Mishina E. D. (2000)
  46. N. Ogawa, K. Miyano, M. Hosoda, T. Higuchi, C. Bell, Y. Hikita, H. Y. Hwang, Enhanced lattice polarization in SrTiO3/LaAlO3 superlattices measured using optical second-harmonic generation. Phys. Rev. B 80, 081106(R) (2009). (10.1103/PhysRevB.80.081106) / Phys. Rev. B / Enhanced lattice polarization in SrTiO3/LaAlO3 superlattices measured using optical second-harmonic generation by Ogawa N. (2009)
  47. N. Bloembergen, P. S. Pershan, Light waves at the boundary of nonlinear media. Phys. Rev. 128, 606–622 (1962). (10.1103/PhysRev.128.606) / Phys. Rev. / Light waves at the boundary of nonlinear media by Bloembergen N. (1962)
Dates
Type When
Created 8 years, 9 months ago (Nov. 11, 2016, 11:39 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 11:14 a.m.)
Indexed 2 weeks, 2 days ago (Aug. 6, 2025, 8:38 a.m.)
Issued 8 years, 9 months ago (Nov. 4, 2016)
Published 8 years, 9 months ago (Nov. 4, 2016)
Published Print 8 years, 9 months ago (Nov. 4, 2016)
Funders 5
  1. Japan Society for the Promotion of Science 10.13039/501100001691

    Region: Asia

    gov (National government)

    Labels6
    1. KAKENHI
    2. 日本学術振興会
    3. Gakushin
    4. JSPS KAKEN
    5. JSPS Grants-in-Aid for Scientific Research
    6. JSPS
    Awards2
    1. ID0EV6BG11760
    2. 15K13332
  2. Iketani Science and Technology Foundation 10.13039/501100008656

    Region: Asia

    pri (Trusts, charities, foundations (both public and private))

    Labels1
    1. 公益財団法人 池谷科学技術振興財団
    Awards1
    1. ID0EVGAI11761
  3. Murata Science Foundation 10.13039/501100008662 Murata Science and Education Foundation

    Region: Asia

    pri (Trusts, charities, foundations (both public and private))

    Labels2
    1. Murata Science Foundation
    2. Murata Science Foundation, Japan
    Awards1
    1. ID0EQNAI11762
  4. Asahi Glass Foundation 10.13039/100007684

    Region: Asia

    gov (Trusts, charities, foundations (both public and private))

    Labels3
    1. 公益財団法人 旭硝子財団
    2. The Asahi Glass Foundation
    3. AGF
    Awards1
    1. ID0ELUAI11763
  5. Japan Science and Technology Agency 10.13039/501100002241

    Region: Asia

    gov (National government)

    Labels7
    1. SCIENCE AND TECHNOLOGY AGENCY OF JAPAN
    2. 国立研究開発法人科学技術振興機構
    3. 国立研究開発法人科学技術振興機構 japan science and technology agency
    4. Japan Science and Technology Agency (JST)
    5. かがくぎじゅつしんこうきこう
    6. 科学技術振興機構
    7. JST
    Awards1
    1. ID0EU1AI11764

@article{Sakai_2016, title={Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe 2}, volume={2}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1601378}, DOI={10.1126/sciadv.1601378}, number={11}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Sakai, Hideaki and Ikeura, Koji and Bahramy, Mohammad Saeed and Ogawa, Naoki and Hashizume, Daisuke and Fujioka, Jun and Tokura, Yoshinori and Ishiwata, Shintaro}, year={2016}, month=nov }