Crossref
journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Authors
2
- Wajdi I. Al Sadat (first)
- Lynden A. Archer (additional)
References
59
Referenced
116
-
R. C. Armstrong, C. Wolfram, K. P. de Jong, R. Gross, N. S. Lewis, B. Boardman, A. J. Ragauskas, K. Ehrhardt-Martinez, G. Crabtree, M. V. Ramana, The frontiers of energy. Nat. Energy 1, 1–8 (2016).
(
10.1038/nenergy.2015.20
) / Nat. Energy / The frontiers of energy by Armstrong R. C. (2016) 10.1126/science.1195449
-
R. York, Do alternative energy sources displace fossil fuels. Nat. Clim. Chang. 2, 441–443 (2012).
(
10.1038/nclimate1451
) / Nat. Clim. Chang. / Do alternative energy sources displace fossil fuels by York R. (2012) 10.1126/science.1181637
10.1126/science.1172246
- E. Z. Hamad W. I. Al-Sadat Reversible solid adsorption method and system utilizing waste heat for on-board recovery and storage of CO 2 from motor vehicle internal combustion engine exhaust gases U.S. Patent 2013/0298532 A1 (2013).
-
G. A. Olah, B. Török, J. P. Joschek, I. Bucsi, P. M. Esteves, G. Rasul, G. K. Surya Prakash, Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al2Cl6/Al system. J. Am. Chem. Soc. 124, 11379–11391 (2002).
(
10.1021/ja020787o
) / J. Am. Chem. Soc. / Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al2Cl6/Al system by Olah G. A. (2002) -
A. N. Sarve, P. A. Ganeshpure, P. Munshi, Carboxylation of toluene by CO2 generating p-toluic acid: A kinetic look. Ind. Eng. Chem. Res. 51, 5174–5180 (2012).
(
10.1021/ie300014z
) / Ind. Eng. Chem. Res. / Carboxylation of toluene by CO2 generating p-toluic acid: A kinetic look by Sarve A. N. (2012) 10.1126/science.1177981
-
K. Takechi, T. Shiga, T. Asaoka, A Li–O2/CO2 battery. Chem. Commun. 47, 3463–3465 (2011).
(
10.1039/c0cc05176d
) / Chem. Commun. / A Li–O2/CO2 battery by Takechi K. (2011) -
Y. Liu, R. Wang, Y. Lyu, H. Li, L. Chen, Rechargeable Li/CO2–O2 (2:1) battery and Li/CO2 battery. Energy Environ. Sci. 7, 677–681 (2014).
(
10.1039/c3ee43318h
) / Energy Environ. Sci. / Rechargeable Li/CO2–O2 (2:1) battery and Li/CO2 battery by Liu Y. (2014) -
S. Xu, S. K. Das, L. A. Archer, The Li–CO2 battery: A novel method for CO2 capture and utilization. RSC Adv. 3, 6656–6660 (2013).
(
10.1039/c3ra40394g
) / RSC Adv. / The Li–CO2 battery: A novel method for CO2 capture and utilization by Xu S. (2013) -
S. K. Das, S. Xu, L. A. Archer, Carbon dioxide assist for non-aqueous sodium–oxygen batteries. Electrochem. Commun. 27, 59–62 (2013).
(
10.1016/j.elecom.2012.10.036
) / Electrochem. Commun. / Carbon dioxide assist for non-aqueous sodium–oxygen batteries by Das S. K. (2013) -
S. Xu, Y. Lu, H. Wang, H. D. Abruna, L. A. Archer, A rechargeable Na–CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes. J. Mater. Chem. A 2, 17723–17729 (2014).
(
10.1039/C4TA04130E
) / J. Mater. Chem. A / A rechargeable Na–CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes by Xu S. (2014) - U.S. Geological Survey (USGS) “Metal prices in the United States through 2010” (U.S. Geological Survey Scientific Investigations Report 2012–5188 USGS Richmond VA 2013).
- D. Linden T. B. Reddy Handbook of Batteries (McGraw-Hill Education New York ed. 3 2011) chap. 1.
-
E. J. Rudd, D. W. Gibbons, High energy density aluminum/oxygen cell. J. Power Sources 47, 329–340 (1994).
(
10.1016/0378-7753(94)87012-8
) / J. Power Sources / High energy density aluminum/oxygen cell by Rudd E. J. (1994) -
C. Li, W. Ji, J. Chen, Z. Tao, Metallic aluminum nanorods: Synthesis via vapor-deposition and applications in Al/air batteries. Chem. Mater. 19, 5812–5814 (2007).
(
10.1021/cm7018795
) / Chem. Mater. / Metallic aluminum nanorods: Synthesis via vapor-deposition and applications in Al/air batteries by Li C. (2007) -
D. R. Egan, C. Ponce de León, R. J. K. Wood, R. L. Jones, K. R. Stokes, F. C. Walsh, Developments in electrode materials and electrolytes for aluminium–air batteries. J. Power Sources 236, 293–310 (2013).
(
10.1016/j.jpowsour.2013.01.141
) / J. Power Sources / Developments in electrode materials and electrolytes for aluminium–air batteries by Egan D. R. (2013) -
M. Mokhtar, M. Z. M. Talib, E. H. Majlan, S. M. Tasirin, W. M. F. Wan Ramli, W. R. Wan Daud, J. Sahari, Recent developments in materials for aluminum–air batteries: A review. J. Ind. Eng. Chem. 32, 1–20 (2015).
(
10.1016/j.jiec.2015.08.004
) / J. Ind. Eng. Chem. / Recent developments in materials for aluminum–air batteries: A review by Mokhtar M. (2015) -
C. Scordilis-Kelley, J. Fuller, R. T. Carlin, J. S. Wilkes, Alkali metal reduction potentials measured in chloroaluminate ambient-temperature molten salts. J. Electrochem. Soc. 139, 694–699 (1992).
(
10.1149/1.2069286
) / J. Electrochem. Soc. / Alkali metal reduction potentials measured in chloroaluminate ambient-temperature molten salts by Scordilis-Kelley C. (1992) -
J. J. Auborn, Y. I. Barberio, An ambient temperature secondary aluminum electrode: Its cycling rates and its cycling efficiencies. J. Electrochem. Soc. 132, 598–601 (1985).
(
10.1149/1.2113913
) / J. Electrochem. Soc. / An ambient temperature secondary aluminum electrode: Its cycling rates and its cycling efficiencies by Auborn J. J. (1985) -
C. J. Dymek Jr, J. L. Williams, D. J. Groeger, J. J. Auborn, An aluminum acid-base concentration cell using room temperature chloroaluminate ionic liquids. J. Electrochem. Soc. 131, 2887–2892 (1984).
(
10.1149/1.2115436
) / J. Electrochem. Soc. / An aluminum acid-base concentration cell using room temperature chloroaluminate ionic liquids by Dymek C. J. (1984) -
R. Revel, T. Audichon, S. Gonzalez, Non-Aqueous aluminium–air battery based on ionic liquid electrolyte. J. Power Sources 272, 415–421 (2014).
(
10.1016/j.jpowsour.2014.08.056
) / J. Power Sources / Non-Aqueous aluminium–air battery based on ionic liquid electrolyte by Revel R. (2014) -
P. Wasserscheid, W. Keim, Ionic liquids–new solutions for transition metal catalysis. Angew. Chem. Int. Ed. Engl. 39, 3772–3789 (2000).
(
10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
) / Angew. Chem. Int. Ed. Engl. / Ionic liquids–new solutions for transition metal catalysis by Wasserscheid P. (2000) 10.1016/j.jpowsour.2015.02.131
10.1039/c1cc15779e
-
H. Wang, Y. Bai, S. Chen, X. Luo, C. Wu, F. Wu, J. Lu, K. Amine, Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl. Mater. Interfaces 7, 80–84 (2015).
(
10.1021/am508001h
) / ACS Appl. Mater. Interfaces / Binder-free V2O5 cathode for greener rechargeable aluminum battery by Wang H. (2015) -
X.-G. Sun, Z. Bi, H. Liu, Y. Fang, C. A. Bridges, M. P. Paranthaman, S. Dai, G. M. Brown, A high performance hybrid battery based on aluminum anode and LiFePO4 cathode. Chem. Commun. 52, 1713–1716 (2016).
(
10.1039/C5CC09019A
) / Chem. Commun. / A high performance hybrid battery based on aluminum anode and LiFePO4 cathode by Sun X.-G. (2016) 10.1038/nature14340
-
D. Gelman, B. Shvartsev, Y. Ein-Eli, Aluminum–air battery based on an ionic liquid electrolyte. J. Mater. Chem. A 2, 20237–20242 (2014).
(
10.1039/C4TA04721D
) / J. Mater. Chem. A / Aluminum–air battery based on an ionic liquid electrolyte by Gelman D. (2014) -
A K. Abdul-Sada, A. M. Greenway, K. R. Seddon, T. Welton, A fast atom bombardment mass spectrometric study of room-temperature 1-ethyl-3-methylimidazolium chloroaluminate (III) ionic liquids. Evidence for the existence of the decachlorotrialuminate (III) anion. Org. Mass. Spec. 28, 759–765 (1993).
(
10.1002/oms.1210280706
) / Org. Mass. Spec. / A fast atom bombardment mass spectrometric study of room-temperature 1-ethyl-3-methylimidazolium chloroaluminate (III) ionic liquids. Evidence for the existence of the decachlorotrialuminate (III) anion by Abdul-Sada A K. (1993) -
G. Franzen, B. P. Gilbert, G. Pelzer, E. DePauw, The anionic structure of room-temperature organic chloroaluminate melts from secondary ion mass spectrometry. Org. Mass Spec. 21, 443–444 (1986).
(
10.1002/oms.1210210714
) / Org. Mass Spec. / The anionic structure of room-temperature organic chloroaluminate melts from secondary ion mass spectrometry by Franzen G. (1986) -
A. Sala, F. Ferrario, E. Rizzi, S. Catinella, P. Traldi, Electron ionization mass spectrometry of some 1-and 2-alkylimidazoles and 1,3-dialkylimidazole iodides. Rapid Commun. Mass Sp. 6, 388–393 (1992).
(
10.1002/rcm.1290060607
) / Rapid Commun. Mass Sp. / Electron ionization mass spectrometry of some 1-and 2-alkylimidazoles and 1,3-dialkylimidazole iodides by Sala A. (1992) -
S. Poetz, P. Handel, G. Fauler, B. Fuchsbichler, M. Schmuck, S. Koller, Evaluation of decomposition products of EMImCl-1.5AlCl3 during aluminium electrodeposition with different analytical methods. RSC Adv. 4, 6685–6690 (2014).
(
10.1039/c3ra46249h
) / RSC Adv. / Evaluation of decomposition products of EMImCl-1.5AlCl3 during aluminium electrodeposition with different analytical methods by Poetz S. (2014) - J. Moulder W. Stickle P. Sobol K. Bomben in Handbook of X-ray Photoelectron Spectroscopy J. Chastain Ed. (PerkinElmer Corporation Eden Prairie 1992).
-
J. R. Lindsay, H. J. Rose Jr, W. E. Swartz Jr, P. H. Watts Jr, K. A. Rayburn, X-ray photoelectron spectra of aluminum oxides: Structural effects on the chemical shift. Appl. Spectrosc. 27, 1–5 (1973).
(
10.1366/000370273774333876
) / Appl. Spectrosc. / X-ray photoelectron spectra of aluminum oxides: Structural effects on the chemical shift by Lindsay J. R. (1973) -
R. T. Carlin, J. Fuller, W. K. Kuhn, M. J. Lysaght, P. C. Trulove, Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes. J. Appl. Electrochem. 26, 1147–1160 (1996).
(
10.1007/BF00243740
) / J. Appl. Electrochem. / Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes by Carlin R. T. (1996) -
V. Y. Young, K. R. Williams, X-ray photoelectron spectroscopy of aluminum oxalate tetrahydrate. J. Electron. Spectrosc. 104, 221–232 (1999).
(
10.1016/S0368-2048(98)00320-X
) / J. Electron. Spectrosc. / X-ray photoelectron spectroscopy of aluminum oxalate tetrahydrate by Young V. Y. (1999) -
A. Hess, E. Kemnitz, A. Lippitz, W. E. S. Unger, D. H. Menz, ESCA, XRD, and IR characterization of aluminum oxide, hydroxyfluoride, and fluoride surfaces in correlation with their catalytic activity in heterogeneous halogen exchange reactions. J. Catal. 148, 270–280 (1994).
(
10.1006/jcat.1994.1208
) / J. Catal. / ESCA, XRD, and IR characterization of aluminum oxide, hydroxyfluoride, and fluoride surfaces in correlation with their catalytic activity in heterogeneous halogen exchange reactions by Hess A. (1994) - G. Beamson D. Briggs High Resolution XPS of Organic Polymers (Wiley New York 1992).
-
F. Bernardi, J. D. Scholten, G. H. Fecher, J. Dupont, J. Morais, Probing the chemical interaction between iridium nanoparticles and ionic liquid by XPS analysis. Chem. Phys. Lett. 479, 113–116 (2009).
(
10.1016/j.cplett.2009.07.110
) / Chem. Phys. Lett. / Probing the chemical interaction between iridium nanoparticles and ionic liquid by XPS analysis by Bernardi F. (2009) -
A. Foelske-Schmitz, D. Weingarth, R. Kötz, XPS analysis of activated carbon supported ionic liquids: Enhanced purity and reduced charging. Surf. Sci. 605, 1979–1985 (2011).
(
10.1016/j.susc.2011.07.016
) / Surf. Sci. / XPS analysis of activated carbon supported ionic liquids: Enhanced purity and reduced charging by Foelske-Schmitz A. (2011) -
B. B. Hurisso, K. R. J. Lovelock, P. Licence, Amino acid-based ionic liquids: Using XPS to probe the electronic environment via binding energies. Phys. Chem. Chem. Phys. 13, 17737–17748 (2011).
(
10.1039/c1cp21763a
) / Phys. Chem. Chem. Phys. / Amino acid-based ionic liquids: Using XPS to probe the electronic environment via binding energies by Hurisso B. B. (2011) -
B. A. Sexton, N. R. Avery, Coordination of acetonitrile (CH3CN) to platinum (111): Evidence for an ƞ2 (C, N) species. Surf. Sci. 129, 21–36 (1983).
(
10.1016/0039-6028(83)90092-4
) / Surf. Sci. / Coordination of acetonitrile (CH3CN) to platinum (111): Evidence for an ƞ2 (C, N) species by Sexton B. A. (1983) -
J. R. Stuff, Thermal decomposition of 1-methyl-3-ethylimidazolium chloride (MEIC)/aluminum chloride molten salts. Thermochim. Acta 152, 421–425 (1989).
(
10.1016/0040-6031(89)85409-7
) / Thermochim. Acta / Thermal decomposition of 1-methyl-3-ethylimidazolium chloride (MEIC)/aluminum chloride molten salts by Stuff J. R. (1989) -
K. E. Hendrickson, L. Ma, G. Cohn, Y. Lu, L. A. Archer, Model membrane-free Li–S batteries for enhanced performance and cycle life. Adv. Sci. 2, 1500068 (2015).
(
10.1002/advs.201500068
) / Adv. Sci. / Model membrane-free Li–S batteries for enhanced performance and cycle life by Hendrickson K. E. (2015) -
I. Bauer, M. Kohl, H. Althues, S. Kaskel, Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes. Chem. Commun. 50, 3208–3210 (2014).
(
10.1039/c4cc00161c
) / Chem. Commun. / Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes by Bauer I. (2014) - “Market prospect and production application of oxalic acid—Organics” (China Chemical Reporter No. 21 2003).
-
H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218–4244 (2012).
(
10.1039/c2cs15359a
) / Chem. Soc. Rev. / Ethylene glycol: Properties, synthesis, and applications by Yue H. (2012) -
G. Finnveden, M. Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D. Pennington, S. Suh, Recent developments in life cycle assessment. J. Environ. Manage. 91, 1–21 (2009).
(
10.1016/j.jenvman.2009.06.018
) / J. Environ. Manage. / Recent developments in life cycle assessment by Finnveden G. (2009) - The Aluminum Association (TAA) “The environmental footprint of semi-finished aluminum products in North America—A life cycle assessment report” (TAA Arlington VA 2013).
- U.S. Energy Information Administration (USEIA) “Electric Power Annual 2014” (USEIA Washington DC 2016).
-
J. Fischer, T. Lehmann, E. Heitz, The production of oxalic acid from CO2 and H2O. J. App. Electrochem. 11, 743–750 (1981).
(
10.1007/BF00615179
) / J. App. Electrochem. / The production of oxalic acid from CO2 and H2O by Fischer J. (1981) -
W. Riemenschneider M. Tanifuji Oxalic acid in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCN Weinheim 2011).
(
10.1002/14356007.a18_247.pub2
) -
H.-K. Lim, H.-D. Lim, K.-Y. Park, D.-H. Seo, H. Gwon, J. Hong, W. A. Goddard, H. Kim, K. Kang, Toward a lithium−“air” battery: The effect of CO2 on the chemistry of a lithium−oxygen cell. J. Am. Chem. Soc. 135, 9733–9742 (2013).
(
10.1021/ja4016765
) / J. Am. Chem. Soc. / Toward a lithium−“air” battery: The effect of CO2 on the chemistry of a lithium−oxygen cell by Lim H.-K. (2013) -
M. T. Carter, C. L. Hussey, S. K. D. Strubinger, R. A. Osteryoung, Electrochemical reduction of dioxygen in room-temperature imidazolium chloride-aluminum chloride molten salts. Inorg. Chem. 30, 1149–1151 (1991).
(
10.1021/ic00005a051
) / Inorg. Chem. / Electrochemical reduction of dioxygen in room-temperature imidazolium chloride-aluminum chloride molten salts by Carter M. T. (1991) -
Y. Katayama, H. Onodera, M. Yamagata, T. Miura, Electrochemical reduction of oxygen in some hydrophobic room-temperature molten salt systems. J. Electrochem. Soc. 151, A59–A63 (2004).
(
10.1149/1.1626669
) / J. Electrochem. Soc. / Electrochemical reduction of oxygen in some hydrophobic room-temperature molten salt systems by Katayama Y. (2004) -
M. M. Islam, T. Imase, T. Okajima, M. Takahashi, Y. Niikura, N. Kawashima, Y. Nakamura, T. Ohsaka, Stability of superoxide ion in imidazolium cation-based room-temperature ionic liquids. J. Phys. Chem. A 113, 912–916 (2009).
(
10.1021/jp807541z
) / J. Phys. Chem. A / Stability of superoxide ion in imidazolium cation-based room-temperature ionic liquids by Islam M. M. (2009)
Dates
Type | When |
---|---|
Created | 9 years, 1 month ago (July 20, 2016, 11:29 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 2:33 p.m.) |
Indexed | 3 weeks ago (July 30, 2025, 9:12 a.m.) |
Issued | 9 years, 1 month ago (July 1, 2016) |
Published | 9 years, 1 month ago (July 1, 2016) |
Published Print | 9 years, 1 month ago (July 1, 2016) |
Funders
1
King Abdullah University of Science and Technology
10.13039/501100004052
Region: Asia
pri (Universities (academic only))
Labels
2
- جامعة الملك عبدالله للعلوم والتقنية
- KAUST
Awards
2
- KUS-C1-018-02
- ID0EP1AG8934
@article{Al_Sadat_2016, title={The O 2 -assisted Al/CO 2 electrochemical cell: A system for CO 2 capture/conversion and electric power generation}, volume={2}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1600968}, DOI={10.1126/sciadv.1600968}, number={7}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Al Sadat, Wajdi I. and Archer, Lynden A.}, year={2016}, month=jul }