Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

A genetic algorithm was used to accelerate the computational discovery of new nanoporous materials for capturing CO 2 .

Bibliography

Chung, Y. G., Gómez-Gualdrón, D. A., Li, P., Leperi, K. T., Deria, P., Zhang, H., Vermeulen, N. A., Stoddart, J. F., You, F., Hupp, J. T., Farha, O. K., & Snurr, R. Q. (2016). In silico discovery of metal-organic frameworks for precombustion CO 2 capture using a genetic algorithm. Science Advances, 2(10).

Authors 12
  1. Yongchul G. Chung (first)
  2. Diego A. Gómez-Gualdrón (additional)
  3. Peng Li (additional)
  4. Karson T. Leperi (additional)
  5. Pravas Deria (additional)
  6. Hongda Zhang (additional)
  7. Nicolaas A. Vermeulen (additional)
  8. J. Fraser Stoddart (additional)
  9. Fengqi You (additional)
  10. Joseph T. Hupp (additional)
  11. Omar K. Farha (additional)
  12. Randall Q. Snurr (additional)
References 66 Referenced 274
  1. J. Wilcox Carbon Capture (Springer 2012). (10.1007/978-1-4614-2215-0)
  2. B. Smit J. A. Reimer C. M. Oldenburg I. C. Bourg Introduction to Carbon Capture and Sequestration (Imperial College Press 2014). (10.1142/p911)
  3. 2015 Paris agreement under the United Nations framework convention on climate change; http://ec.europa.eu/clima/policies/international/negotiations/paris.
  4. P. Friedlingstein, R. M. Andrew, J. Rogelj, G. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, M. R. Raupach, M. Schaeffer, D. P. van Vuuren, C. Le Quéré, Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014). (10.1038/ngeo2248) / Nat. Geosci. / Persistent growth of CO2 emissions and implications for reaching climate targets by Friedlingstein P. (2014)
  5. S. Sircar, T. C. Golden, Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000). (10.1081/SS-100100183) / Sep. Sci. Technol. / Purification of hydrogen by pressure swing adsorption by Sircar S. (2000)
  6. U.S. Department of Energy Office of Fossil Energy “Carbon Capture Technology Program Plan” (Department of Energy Office of Fossil Energy 2013); https://www.netl.doe.gov/File%20Library/Research/Coal/carbon%20capture/Program-Plan-Carbon-Capture-2013.pdf.
  7. 10.1126/science.1230444
  8. 10.1126/science.aaa8075
  9. F.-X. Coudert, A. H. Fuchs, Computational characterization and prediction of metal–organic framework properties. Coord. Chem. Rev. 307, 211–236 (2016). (10.1016/j.ccr.2015.08.001) / Coord. Chem. Rev. / Computational characterization and prediction of metal–organic framework properties by Coudert F.-X. (2016)
  10. 10.1038/nature17430
  11. W. R. Lee, S. Y. Hwang, D. W. Ryu, K. S. Lim, S. S. Han, D. Moon, J. Choi, C. S. Hong, Diamine-functionalized metal–organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy Environ. Sci. 7, 744–751 (2014). (10.1039/C3EE42328J) / Energy Environ. Sci. / Diamine-functionalized metal–organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism by Lee W. R. (2014)
  12. A. M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gándara, J. A. Reimer, O. M. Yaghi, Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 136, 8863–8866 (2014). (10.1021/ja503296c) / J. Am. Chem. Soc. / Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water by Fracaroli A. M. (2014)
  13. J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi, J. R. Long, Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015). (10.1038/nature15732) / Nature / Methane storage in flexible metal–organic frameworks with intrinsic thermal management by Mason J. A. (2015)
  14. Z. R. Herm, J. A. Swisher, B. Smit, R. Krishna, J. R. Long, Metal–organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664–5667 (2011). (10.1021/ja111411q) / J. Am. Chem. Soc. / Metal–organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture by Herm Z. R. (2011)
  15. 10.1039/c1sc00354b
  16. Z. R. Herm, R. Krishna, J. R. Long, CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc). Microporous Mesoporous Mater. 151, 481–487 (2012). (10.1016/j.micromeso.2011.09.004) / Microporous Mesoporous Mater. / CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc) by Herm Z. R. (2012)
  17. 10.1126/sciadv.1500421
  18. Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, R. Q. Snurr, Computation-ready, experimental metal–organic frameworks: A tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 26, 6185–6192 (2014). (10.1021/cm502594j) / Chem. Mater. / Computation-ready, experimental metal–organic frameworks: A tool to enable high-throughput screening of nanoporous crystals by Chung Y. G. (2014)
  19. 10.1038/nmat3336
  20. C. E. Wilmer, O. K. Farha, Y.-S. Bae, J. T. Hupp, R. Q. Snurr, Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ. Sci. 5, 9849–9856 (2012). (10.1039/c2ee23201d) / Energy Environ. Sci. / Structure–property relationships of porous materials for carbon dioxide separation and capture by Wilmer C. E. (2012)
  21. C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2011). (10.1038/nchem.1192) / Nat. Chem. / Large-scale screening of hypothetical metal–organic frameworks by Wilmer C. E. (2011)
  22. D. A. Gómez-Gualdrón, C. E. Wilmer, O. K. Farha, J. T. Hupp, R. Q. Snurr, Exploring the limits of methane storage and delivery in nanoporous materials. J. Phys. Chem. C 118, 6941–6951 (2014). (10.1021/jp502359q) / J. Phys. Chem. C / Exploring the limits of methane storage and delivery in nanoporous materials by Gómez-Gualdrón D. A. (2014)
  23. 10.1039/C4EE03515A
  24. D. A. Gomez-Gualdron, O. V. Gutov, V. Krungleviciute, B. Borah, J. E. Mondloch, J. T. Hupp, T. Yildirim, O. K. Farha, R. Q. Snurr, Computational design of metal–organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem. Mater. 26, 5632–5639 (2014). (10.1021/cm502304e) / Chem. Mater. / Computational design of metal–organic frameworks based on stable zirconium building units for storage and delivery of methane by Gomez-Gualdron D. A. (2014)
  25. B. J. Sikora, C. E. Wilmer, M. L. Greenfield, R. Q. Snurr, Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks. Chem. Sci. 3, 2217–2223 (2012). (10.1039/c2sc01097f) / Chem. Sci. / Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks by Sikora B. J. (2012)
  26. C. M. Simon, R. Mercado, S. K. Schnell, B. Smit, M. Haranczyk, What are the best materials to separate a xenon/krypton mixture?. Chem. Mater. 27, 4459–4475 (2015). (10.1021/acs.chemmater.5b01475) / Chem. Mater. / What are the best materials to separate a xenon/krypton mixture? by Simon C. M. (2015)
  27. Y. J. Colón, D. Fairen-Jimenez, C. E. Wilmer, R. Q. Snurr, High-throughput screening of porous crystalline materials for hydrogen storage capacity near room temperature. J. Phys. Chem. C 118, 5383–5389 (2014). (10.1021/jp4122326) / J. Phys. Chem. C / High-throughput screening of porous crystalline materials for hydrogen storage capacity near room temperature by Colón Y. J. (2014)
  28. 10.1038/ncomms6912
  29. J. Goldsmith, A. G. Wong-Foy, M. J. Cafarella, D. J. Siegel, Theoretical limits of hydrogen storage in metal–organic frameworks: Opportunities and trade-offs. Chem. Mater. 25, 3373–3382 (2013). (10.1021/cm401978e) / Chem. Mater. / Theoretical limits of hydrogen storage in metal–organic frameworks: Opportunities and trade-offs by Goldsmith J. (2013)
  30. S. O. Odoh, C. J. Cramer, D. G. Truhlar, L. Gagliardi, Quantum-chemical characterization of the properties and reactivities of metal-organic frameworks. Chem. Rev. 115, 6051–6111 (2015). (10.1021/cr500551h) / Chem. Rev. / Quantum-chemical characterization of the properties and reactivities of metal-organic frameworks by Odoh S. O. (2015)
  31. 10.1039/C5CP00002E
  32. Y. Bao, R. L. Martin, C. M. Simon, M. Haranczyk, B. Smit, M. W. Deem, In silico discovery of high deliverable capacity metal organic frameworks. J. Phys. Chem. C 119, 186–195 (2015). (10.1021/jp5123486) / J. Phys. Chem. C / In silico discovery of high deliverable capacity metal organic frameworks by Bao Y. (2015)
  33. 10.1021/jz501331m
  34. C. M. Breneman, K. B. Wiberg, Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990). (10.1002/jcc.540110311) / J. Comput. Chem. / Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis by Breneman C. M. (1990)
  35. C. E. Wilmer, K. C. Kim, R. Q. Snurr, An extended charge equilibration method. J. Phys. Chem. Lett. 3, 2506–2511 (2012). (10.1021/jz3008485) / J. Phys. Chem. Lett. / An extended charge equilibration method by Wilmer C. E. (2012)
  36. X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness, M. Schroder, High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: The role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009). (10.1021/ja806624j) / J. Am. Chem. Soc. / High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: The role of pore size, ligand functionalization, and exposed metal sites by Lin X. (2009)
  37. T. A. Makal, X. Wang, H.-C. Zhou, Tuning the moisture and thermal stability of metal–organic frameworks through incorporation of pendant hydrophobic groups. Cryst. Growth Des. 13, 4760–4768 (2013). (10.1021/cg4009224) / Cryst. Growth Des. / Tuning the moisture and thermal stability of metal–organic frameworks through incorporation of pendant hydrophobic groups by Makal T. A. (2013)
  38. D. A. Gómez-Gualdrón, P. Z. Moghadam, J. T. Hupp, O. K. Farha, R. Q. Snurr, Application of consistency criteria to calculate BET areas of micro- and mesoporous metal–organic frameworks. J. Am. Chem. Soc. 138, 215–224 (2016). (10.1021/jacs.5b10266) / J. Am. Chem. Soc. / Application of consistency criteria to calculate BET areas of micro- and mesoporous metal–organic frameworks by Gómez-Gualdrón D. A. (2016)
  39. J. Jia, X. Lin, C. Wilson, A. J. Blake, N. R. Champness, P. Hubberstey, G. Walker, E. J. Cussen, M. Schröder, Twelve-connected porous metal–organic frameworks with high H2 adsorption. Chem. Commun. 2007, 840–842 (2007). (10.1039/B614254K) / Chem. Commun. / Twelve-connected porous metal–organic frameworks with high H2 adsorption by Jia J. (2007)
  40. 10.1021/acs.iecr.5b03122
  41. G. E. Norman, V. S. Filinov, Investigations of phase transitions by a Monte Carlo method. High Temp. 7, 216–222 (1969). / High Temp. / Investigations of phase transitions by a Monte Carlo method by Norman G. E. (1969)
  42. D. Dubbeldam, A. Torres-Knoop, K. S. Walton, On the inner workings of Monte Carlo codes. Mol. Simulat. 39, 1253–1292 (2013). (10.1080/08927022.2013.819102) / Mol. Simulat. / On the inner workings of Monte Carlo codes by Dubbeldam D. (2013)
  43. 10.1080/08927022.2015.1010082
  44. B. L. Miller, D. E. Goldberg, Genetic algorithms, selection schemes, and the varying effects of noise. Evol. Comput. 4, 113–131 (1996). (10.1162/evco.1996.4.2.113) / Evol. Comput. / Genetic algorithms, selection schemes, and the varying effects of noise by Miller B. L. (1996)
  45. D. Peng, D. B. Robinson, A new two-constant equation of state. Ind. Eng. Chem. Fund. 15, 59–64 (1976). (10.1021/i160057a011) / Ind. Eng. Chem. Fund. / A new two-constant equation of state by Peng D. (1976)
  46. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992). (10.1021/ja00051a040) / J. Am. Chem. Soc. / UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations by Rappe A. K. (1992)
  47. J. J. Potoff, J. I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001). (10.1002/aic.690470719) / AIChE J. / Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen by Potoff J. J. (2001)
  48. F. Darkrim, D. Levesque, Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J. Chem. Phys. 109, 4981–4984 (1998). (10.1063/1.477109) / J. Chem. Phys. / Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes by Darkrim F. (1998)
  49. C. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr, J. T. Hupp, Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013). (10.1039/c3ee24506c) / Energy Environ. Sci. / Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases by Wilmer C. E. (2013)
  50. Y. Peng, G. Srinivas, C. E. Wilmer, I. Eryazici, R. Q. Snurr, J. T. Hupp, T. Yildirim, O. K. Farha, Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111. Chem. Commun. 49, 2992–2994 (2013). (10.1039/c3cc40819a) / Chem. Commun. / Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111 by Peng Y. (2013)
  51. Q. Yang, C. Zhong, Molecular simulation of adsorption and diffusion of hydrogen in metal–organic frameworks. J. Phys. Chem. B 109, 11862–11864 (2005). (10.1021/jp051903n) / J. Phys. Chem. B / Molecular simulation of adsorption and diffusion of hydrogen in metal–organic frameworks by Yang Q. (2005)
  52. K. A. Forrest, T. Pham, K. McLaughlin, J. L. Belof, A. C. Stern, M. J. Zaworotko, B. Space, Simulation of the mechanism of gas sorption in a metal–organic framework with open metal sites: Molecular hydrogen in PCN-61. J. Phys. Chem. C 116, 15538–15549 (2012). (10.1021/jp306084t) / J. Phys. Chem. C / Simulation of the mechanism of gas sorption in a metal–organic framework with open metal sites: Molecular hydrogen in PCN-61 by Forrest K. A. (2012)
  53. B. J. Sikora, R. Winnegar, D. M. Proserpio, R. Q. Snurr, Textural properties of a large collection of computationally constructed MOFs and zeolites. Micropor. Mesopor. Mat. 186, 207–213 (2014). (10.1016/j.micromeso.2013.11.041) / Micropor. Mesopor. Mat. / Textural properties of a large collection of computationally constructed MOFs and zeolites by Sikora B. J. (2014)
  54. Y.-S. Bae, R. Q. Snurr, Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. Engl. 50, 11586–11596 (2011). (10.1002/anie.201101891) / Angew. Chem. Int. Ed. Engl. / Development and evaluation of porous materials for carbon dioxide separation and capture by Bae Y.-S. (2011)
  55. R. T. Yang Adsorbents: Fundamentals and Applications (John Wiley & Sons Inc. 2003). (10.1002/047144409X)
  56. K. Deb, A. Pratap, S. Argawal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002). (10.1109/4235.996017) / IEEE Trans. Evol. Comput. / A fast and elitist multi-objective genetic algorithm: NSGA-II by Deb K. (2002)
  57. J. I. Feldblyum, M. Liu, D. W. Gidley, A. J. Matzger, Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1. J. Am. Chem. Soc. 133, 18257–18263 (2011). (10.1021/ja2055935) / J. Am. Chem. Soc. / Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1 by Feldblyum J. I. (2011)
  58. K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser, Y. J. Chabal, Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem. Mater. 24, 3153–3167 (2012). (10.1021/cm301427w) / Chem. Mater. / Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration by Tan K. (2012)
  59. M. K. Bhunia, J. T. Hughes, J. C. Fettinger, A. Navrotsky, Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir 29, 8140–8145 (2013). (10.1021/la4012839) / Langmuir / Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1 by Bhunia M. K. (2013)
  60. M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone B. Mennucci G. A. Petersson H. Nakatsuji M. Caricato X. Li H. P. Hratchian A. F. Izmaylov J. Bloino G. Zheng J. L. Sonnenberg M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven J. A. Montgomery Jr. J. E. Peralta F. Ogliaro M. J. Bearpark J. Heyd E. N. Brothers K. N. Kudin V. N. Staroverov R. Kobayashi J. Normand K. Raghavachari A. P. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi N. Rega N. J. Millam M. Klene J. E. Knox J. B. Cross V. Bakken C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski R. L. Martin K. Morokuma V. G. Zakrzewski G. A. Voth P. Salvador J. J. Dannenberg S. Dapprich A. D. Daniels Ö. Farkas J. B. Foresman J. V. Ortiz J. Cioslowski D. J. Fox Gaussian 09 (Gaussian Inc. Wallingford CT 2009).
  61. 10.1063/1.464304
  62. 10.1103/PhysRevB.37.785
  63. 10.1063/1.438955
  64. M. J. Frisch, J. A. Pople, J. S. Binkley, Self-consistent molecular-orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984). (10.1063/1.447079) / J. Chem. Phys. / Self-consistent molecular-orbital methods 25. Supplementary functions for Gaussian basis sets by Frisch M. J. (1984)
  65. T. H. Dunning Jr, Gaussian basis sets for the atoms gallium through krypton. J. Chem. Phys. 66, 1382–1383 (1977). (10.1063/1.434039) / J. Chem. Phys. / Gaussian basis sets for the atoms gallium through krypton by Dunning T. H. (1977)
  66. K. S. Walton, D. S. Sholl, Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J. 61, 2757–2762 (2015). (10.1002/aic.14878) / AIChE J. / Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory by Walton K. S. (2015)
Dates
Type When
Created 8 years, 10 months ago (Oct. 14, 2016, 10:49 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 2:46 p.m.)
Indexed 2 hours, 3 minutes ago (Aug. 30, 2025, 12:22 p.m.)
Issued 8 years, 10 months ago (Oct. 7, 2016)
Published 8 years, 10 months ago (Oct. 7, 2016)
Published Print 8 years, 10 months ago (Oct. 7, 2016)
Funders 6
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards2
    1. ID0EI2CI
    2. DE-FG02-12ER16362
  2. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards2
    1. DE-FG02-08ER15967
    2. ID0EG6CI
  3. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards2
    1. ID0EIDDI
    2. DE-FG02-08ER15967
  4. King Abdulaziz City for Science and Technology 10.13039/501100004919

    Region: Asia

    gov (National government)

    Labels1
    1. KACST
    Awards1
    1. ID0EEHDI
  5. Northwestern University 10.13039/100007059

    Region: Americas

    pri (Universities (academic only))

    Labels3
    1. Northwestern
    2. Universitas Northwestern
    3. NU
    Awards1
    1. ID0E6LDI
  6. Stanford University 10.13039/100005492

    Region: Americas

    gov (Universities (academic only))

    Labels3
    1. Stanford
    2. Leland Stanford Junior University
    3. SU
    Awards2
    1. Global Climate and Energy Project
    2. ID0E1QDI

@article{Chung_2016, title={In silico discovery of metal-organic frameworks for precombustion CO 2 capture using a genetic algorithm}, volume={2}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1600909}, DOI={10.1126/sciadv.1600909}, number={10}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Chung, Yongchul G. and Gómez-Gualdrón, Diego A. and Li, Peng and Leperi, Karson T. and Deria, Pravas and Zhang, Hongda and Vermeulen, Nicolaas A. and Stoddart, J. Fraser and You, Fengqi and Hupp, Joseph T. and Farha, Omar K. and Snurr, Randall Q.}, year={2016}, month=oct }