Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

Elastic deformation in solid electrolytes with immobilized anions suppresses dendritic electrodeposition of metals.

Bibliography

Tikekar, M. D., Archer, L. A., & Koch, D. L. (2016). Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Science Advances, 2(7).

Authors 3
  1. Mukul D. Tikekar (first)
  2. Lynden A. Archer (additional)
  3. Donald L. Koch (additional)
References 44 Referenced 256
  1. M. Z. Bazant, Regulation of ramified electrochemical growth by a diffusive wave. Phys. Rev. E 52, 1903–1914 (1995). (10.1103/PhysRevE.52.1903) / Phys. Rev. E / Regulation of ramified electrochemical growth by a diffusive wave by Bazant M. Z. (1995)
  2. C. Léger, J. Elezgaray, F. Argoul, Dynamical characterization of one-dimensional stationary growth regimes in diffusion-limited electrodeposition process. Phys. Rev. E 58, 7700–7709 (1998). (10.1103/PhysRevE.58.7700) / Phys. Rev. E / Dynamical characterization of one-dimensional stationary growth regimes in diffusion-limited electrodeposition process by Léger C. (1998)
  3. W. W. Mullins, R. F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444–451 (1964). (10.1063/1.1713333) / J. Appl. Phys. / Stability of a planar interface during solidification of a dilute binary alloy by Mullins W. W. (1964)
  4. I. Golding, Y. Kozlovsky, I. Cohen, E. Ben-Jacob, Studies of bacterial branching growth using reaction–diffusion models for colonial development. Physica A 260, 510–544 (1998). (10.1016/S0378-4371(98)00345-8) / Physica A / Studies of bacterial branching growth using reaction–diffusion models for colonial development by Golding I. (1998)
  5. H. Gao, W. D. Nix, Surface roughening of heteroepitaxial thin films. Annu. Rev. Mater. Sci. 29, 173–209 (1999). (10.1146/annurev.matsci.29.1.173) / Annu. Rev. Mater. Sci. / Surface roughening of heteroepitaxial thin films by Gao H. (1999)
  6. R. Aogaki, K. Kitazawa, Y. Kose, K. Fueki, Theory of powdered crystal formation in electrocrystallization—Occurrence of morphological instability at the electrode surface. Electrochim. Acta 25, 965–972 (1980). (10.1016/0013-4686(80)87101-5) / Electrochim. Acta / Theory of powdered crystal formation in electrocrystallization—Occurrence of morphological instability at the electrode surface by Aogaki R. (1980)
  7. J. K. Stark, Y. Ding, P. A. Kohl, Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J. Electrochem. Soc., 158, A1100–A1105 (2011). (10.1149/1.3622348) / J. Electrochem. Soc. / Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery by Stark J. K. (2011)
  8. L.-G. Sundstrom, F. H. Bark, On morphological instability during electrodeposition with a stagnant binary electrolyte. Electrochim. Acta 40, 599–614 (1995). (10.1016/0013-4686(94)00379-F) / Electrochim. Acta / On morphological instability during electrodeposition with a stagnant binary electrolyte by Sundstrom L.-G. (1995)
  9. D. P. Barkey, R. H. Muller, C. W. Tobias, Roughness development in metal electrodeposition II. Stability theory. J. Electrochem. Soc. 136, 2207–2214 (1989). (10.1149/1.2097260) / J. Electrochem. Soc. / Roughness development in metal electrodeposition II. Stability theory by Barkey D. P. (1989)
  10. 10.1021/cr030203g
  11. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). (10.1039/C3EE40795K) / Energy Environ. Sci. / Lithium metal anodes for rechargeable batteries by Xu W. (2014)
  12. 10.1149/1.1850854
  13. G. M. Stone, S. A. Mullin, A. A. Teran, D. T. Hallinan Jr, A. M. Minor, A. Hexemer, N. P. Balsara, Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012). (10.1149/2.030203jes) / J. Electrochem. Soc. / Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries by Stone G. M. (2012)
  14. R. Khurana, J. L. Schaefer, L. A. Archer, G. W. Coates, Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014). (10.1021/ja502133j) / J. Am. Chem. Soc. / Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries by Khurana R. (2014)
  15. Q. Pan, D. M. Smith, H. Qi, S. Wang, C. Y. Li, Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015). (10.1002/adma.201502059) / Adv. Mater. / Hybrid electrolytes with controlled network structures for lithium metal batteries by Pan Q. (2015)
  16. Y. Ansari, B. Guo, J. H. Cho, K. Park, J. Song, C. J. Ellison, J. B. Goodenough, Low-cost, dendrite blocking polymer-Sb2O3 separators for lithium and sodium batteries. J. Electrochem. Soc. 161, A1655–A1661 (2014). (10.1149/2.0631410jes) / J. Electrochem. Soc. / Low-cost, dendrite blocking polymer-Sb2O3 separators for lithium and sodium batteries by Ansari Y. (2014)
  17. 10.1038/ncomms10101
  18. I. Gurevitch, R. Buonsanti, A. A. Teran, B. Gludovatz, R. O. Ritchie, J. Cabana, N. P. Balsara, Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013). (10.1149/2.117309jes) / J. Electrochem. Soc. / Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries by Gurevitch I. (2013)
  19. 10.1038/ncomms7152
  20. J. L. Barton, J. O’M. Bockris, The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. Lond. A 268, 485–505 (1962). (10.1098/rspa.1962.0154) / Proc. R. Soc. Lond. A / The electrolytic growth of dendrites from ionic solutions by Barton J. L. (1962)
  21. 10.1149/1.2969424
  22. 10.1016/S0378-7753(98)00242-0
  23. T. Osaka, T. Homma, T. Momma, H. Yarimizu, In situ observation of lithium deposition processes in solid polymer and gel electrolytes. J. Electroanal. Chem. 421, 153–156 (1997). (10.1016/S0022-0728(96)04870-X) / J. Electroanal. Chem. / In situ observation of lithium deposition processes in solid polymer and gel electrolytes by Osaka T. (1997)
  24. 10.1103/PhysRevA.42.7355
  25. W. H. Smyrl, J. Newman, Double layer structure at the limiting current. Trans. Faraday Soc. 63, 207–216 (1967). (10.1039/tf9676300207) / Trans. Faraday Soc. / Double layer structure at the limiting current by Smyrl W. H. (1967)
  26. K. T. Chu, M. Z. Bazant, Electrochemical thin films at and above the classical limiting current. SIAM J. Appl. Math. 65, 1485–1505 (2005). (10.1137/040609926) / SIAM J. Appl. Math. / Electrochemical thin films at and above the classical limiting current by Chu K. T. (2005)
  27. 10.1149/2.085405jes
  28. I. Rubinshtein, B. Zaltzman, J. Pretz, C. Linder, Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane. Russ. J. Electrochem., 38, 853–863 (2002). (10.1023/A:1016861711744) / Russ. J. Electrochem. / Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane by Rubinshtein I. (2002)
  29. 10.1016/0376-7388(95)00102-I
  30. R. J. Charles, Stress induced binary diffusion in a solid. J. Electrochem. Soc. 116, 1514–1519 (1969). (10.1149/1.2411590) / J. Electrochem. Soc. / Stress induced binary diffusion in a solid by Charles R. J. (1969)
  31. N. Weber, M. Goldstein, Stress-induced migration and partial molar volume of sodium ions in glass. J. Chem. Phys. 41, 2898–2901 (1964). (10.1063/1.1726372) / J. Chem. Phys. / Stress-induced migration and partial molar volume of sodium ions in glass by Weber N. (1964)
  32. 10.1103/PhysRevE.84.061504
  33. Y. Marcus, G. Hefter, Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. Chem. Rev. 104, 3405–3452 (2004). (10.1021/cr030047d) / Chem. Rev. / Standard partial molar volumes of electrolytes and ions in nonaqueous solvents by Marcus Y. (2004)
  34. J. Song, H. Lee, M.-J. Choo, J.-K. Park, H.-T. Kim, Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015). (10.1038/srep14458) / Sci. Rep. / Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes by Song J. (2015)
  35. J. L. Schaefer, D. A. Yanga, L. A. Archer, High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013). (10.1021/cm303091j) / Chem. Mater. / High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites by Schaefer J. L. (2013)
  36. Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L. A. Archer, Stable cycling of lithium metal batteries using high lithium transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015). (10.1002/aenm.201402073) / Adv. Energy Mater. / Stable cycling of lithium metal batteries using high lithium transference number electrolytes by Lu Y. (2015)
  37. G. H. McKinley, Dimensionless groups for understanding free surface flows of complex fluids. Soc. Rheol. Bull., 6–9 (2005). / Soc. Rheol. Bull. / Dimensionless groups for understanding free surface flows of complex fluids by McKinley G. H. (2005)
  38. 10.1039/C4SM02413C
  39. 10.1038/ncomms3728
  40. W. N. Bond, The surface tension of a moving water sheet. Proc. Phys. Soc. 47, 549–558 (1935). (10.1088/0959-5309/47/4/303) / Proc. Phys. Soc. / The surface tension of a moving water sheet by Bond W. N. (1935)
  41. W. H. Hager, Wilfrid Noel Bond and the Bond number. J. Hydraulics Res. 50, 3–9 (2012). (10.1080/00221686.2011.649839) / J. Hydraulics Res. / Wilfrid Noel Bond and the Bond number by Hager W. H. (2012)
  42. Z. Tu, Y. Kambe, Y. Lu, L. A. Archer, Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014). (10.1002/aenm.201300654) / Adv. Energy Mater. / Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries by Tu Z. (2014)
  43. Q. Chen, K. Geng, K. Sieradzki, Prospects for dendrite-free cycling of Li metal batteries. J. Electrochem. Soc., 162, A2004–A2007 (2015). (10.1149/2.0261510jes) / J. Electrochem. Soc. / Prospects for dendrite-free cycling of Li metal batteries by Chen Q. (2015)
  44. J. J. Kelly, A. C. West, Copper deposition in the presence of polyethylene glycol. I. Quartz crystal microbalance study. J. Electrochem. Soc., 145, 3472–3476 (1998). (10.1149/1.1838829) / J. Electrochem. Soc. / Copper deposition in the presence of polyethylene glycol. I. Quartz crystal microbalance study by Kelly J. J. (1998)
Dates
Type When
Created 9 years, 1 month ago (July 15, 2016, 8:39 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 2:34 p.m.)
Indexed 2 weeks, 6 days ago (July 31, 2025, 11:53 p.m.)
Issued 9 years, 1 month ago (July 1, 2016)
Published 9 years, 1 month ago (July 1, 2016)
Published Print 9 years, 1 month ago (July 1, 2016)
Funders 1
  1. Office of Science 10.13039/100006132

    Region: Americas

    gov (National government)

    Labels8
    1. U.S. DOE Office of Science
    2. DOE Office of Science
    3. DOE's Office of Science
    4. Department of Energy's (DOE's) Office of Science
    5. The DOE Office of Science
    6. U.S. Department of Energy Office of Science
    7. U.S. Dept. of Energy Office of Science
    8. SC
    Awards2
    1. DESC0001086
    2. ID0EIPBG8066

@article{Tikekar_2016, title={Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions}, volume={2}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1600320}, DOI={10.1126/sciadv.1600320}, number={7}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Tikekar, Mukul D. and Archer, Lynden A. and Koch, Donald L.}, year={2016}, month=jul }