Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

Data-mining the stability of 29,902 material phases reveals the thermodynamic landscape of inorganic crystalline metastability.

Bibliography

Sun, W., Dacek, S. T., Ong, S. P., Hautier, G., Jain, A., Richards, W. D., Gamst, A. C., Persson, K. A., & Ceder, G. (2016). The thermodynamic scale of inorganic crystalline metastability. Science Advances, 2(11).

Authors 9
  1. Wenhao Sun (first)
  2. Stephen T. Dacek (additional)
  3. Shyue Ping Ong (additional)
  4. Geoffroy Hautier (additional)
  5. Anubhav Jain (additional)
  6. William D. Richards (additional)
  7. Anthony C. Gamst (additional)
  8. Kristin A. Persson (additional)
  9. Gerbrand Ceder (additional)
References 64 Referenced 718
  1. J. W. Gibbs, On the equilibrium of heterogeneous substances. Am. J. Sci. 96, 441–458 (1878). (10.2475/ajs.s3-16.96.441) / Am. J. Sci. / On the equilibrium of heterogeneous substances by Gibbs J. W. (1878)
  2. A. Sclafani, J. M. Herrmann, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J. Phys. Chem. 100, 13655–13661 (1996). (10.1021/jp9533584) / J. Phys. Chem. / Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions by Sclafani A. (1996)
  3. 10.1073/pnas.1607850113
  4. T. F. Kuech, S. E. Babcock, L. Mawst, Growth far from equilibrium: Examples from III-V semiconductors. Appl. Phys. Rev. 3, 040801 (2016). (10.1063/1.4944801) / Appl. Phys. Rev. / Growth far from equilibrium: Examples from III-V semiconductors by Kuech T. F. (2016)
  5. 10.1021/cm00022a005
  6. S. Sanna, V. Esposito, J. W. Andreasen, J. Hjelm, W. Zhang, T. Kasama, S. B. Simonsen, M. Christensen, S. Linderoth, N. Pryds, Enhancement of the chemical stability in confined δ-Bi2O3. Nat. Mater. 14, 500–504 (2015). (10.1038/nmat4266) / Nat. Mater. / Enhancement of the chemical stability in confined δ-Bi2O3 by Sanna S. (2015)
  7. J. Bernstein Polymorphism in Molecular Crystals vol. 14 (Oxford Univ. Press 2007). (10.1093/acprof:oso/9780199236565.001.0001)
  8. 10.1038/nature17981
  9. 10.1021/cm00055a001
  10. 10.1126/science.259.5101.1558
  11. M. Jansen, A concept for synthesis planning in solid-state chemistry. Angew. Chem. Int. Ed. Engl. 41, 3746–3766 (2002). (10.1002/1521-3773(20021018)41:20<3746::AID-ANIE3746>3.0.CO;2-2) / Angew. Chem. Int. Ed. Engl. / A concept for synthesis planning in solid-state chemistry by Jansen M. (2002)
  12. S. L. Price, Why don't we find more polymorphs?. Acta Crystallogr. Sect. B Struct. Sci. 69, 313–328 (2013). (10.1107/S2052519213018861) / Acta Crystallogr. Sect. B Struct. Sci. / Why don't we find more polymorphs? by Price S. L. (2013)
  13. V. Stevanović, Sampling polymorphs of ionic solids using random superlattices. Phys. Rev. Lett. 116, 075503 (2016). (10.1103/PhysRevLett.116.075503) / Phys. Rev. Lett. / Sampling polymorphs of ionic solids using random superlattices by Stevanović V. (2016)
  14. A. R. Oganov, M. Valle, How to quantify energy landscapes of solids. J. Chem. Phys. 130, 104504 (2009). (10.1063/1.3079326) / J. Chem. Phys. / How to quantify energy landscapes of solids by Oganov A. R. (2009)
  15. M. Jansen, I. V. Pentin, J. C. Schön, A universal representation of the states of chemical matter including metastable configurations in phase diagrams. Angew. Chem. Int. Ed. Engl. 51, 132–135 (2012). (10.1002/anie.201106220) / Angew. Chem. Int. Ed. Engl. / A universal representation of the states of chemical matter including metastable configurations in phase diagrams by Jansen M. (2012)
  16. M. A. Zwijnenburg, F. Illas, S. T. Bromley, Apparent scarcity of low-density polymorphs of inorganic solids. Phys. Rev. Lett. 104, 175503 (2010). (10.1103/PhysRevLett.104.175503) / Phys. Rev. Lett. / Apparent scarcity of low-density polymorphs of inorganic solids by Zwijnenburg M. A. (2010)
  17. 10.1038/nmat3568
  18. 10.1063/1.4812323
  19. 10.1007/s11837-013-0755-4
  20. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012). (10.1016/j.commatsci.2012.02.002) / Comput. Mater. Sci. / AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations by Curtarolo S. (2012)
  21. A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch, New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design. Acta Crystallogr. Sect. B Struct. Sci. 58, 364–369 (2002). (10.1107/S0108768102006948) / Acta Crystallogr. Sect. B Struct. Sci. / New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design by Belsky A. (2002)
  22. S. Ping Ong, L. Wang, B. Kang, G. Ceder, Li–Fe–P–O2 phase diagram from first principles calculations. Chem. Mater. 20, 1798–1807 (2008). (10.1021/cm702327g) / Chem. Mater. / Li–Fe–P–O2 phase diagram from first principles calculations by Ping Ong S. (2008)
  23. A. Jain, G. Hautier, S. Ping Ong, C. J. Moore, C. C. Fischer, K. A. Persson, G. Ceder, Formation enthalpies by mixing GGA and GGA+U calculations. Phys. Rev. B 84, 045115 (2011). (10.1103/PhysRevB.84.045115) / Phys. Rev. B / Formation enthalpies by mixing GGA and GGA+U calculations by Jain A. (2011)
  24. 10.1103/PhysRevB.73.195107
  25. L. Wang, T. Maxisch, G. Ceder, A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007). (10.1021/cm0620943) / Chem. Mater. / A first-principles approach to studying the thermal stability of oxide cathode materials by Wang L. (2007)
  26. 10.1016/j.commatsci.2011.02.023
  27. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen, Z.-K. Liu, Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad 28, 79–90 (2004). (10.1016/j.calphad.2004.05.002) / Calphad / Ab initio lattice stability in comparison with CALPHAD lattice stability by Wang Y. (2004)
  28. S. Curtarolo, D. Morgan, G. Ceder, Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys. Calphad 29, 163–211 (2005). (10.1016/j.calphad.2005.01.002) / Calphad / Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys by Curtarolo S. (2005)
  29. 10.1103/PhysRevB.85.155208
  30. 10.1103/PhysRevB.85.115104
  31. 10.1038/npjcompumats.2015.10
  32. S. Ping Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, K. A. Persson, The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles. Comput. Mater. Sci. 97, 209–215 (2015). (10.1016/j.commatsci.2014.10.037) / Comput. Mater. Sci. / The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles by Ping Ong S. (2015)
  33. R. Niewa, F. J. DiSalvo, Recent developments in nitride chemistry. Chem. Mater. 10, 2733–2752 (1998). (10.1021/cm980137c) / Chem. Mater. / Recent developments in nitride chemistry by Niewa R. (1998)
  34. D. H. Gregory, Structural families in nitride chemistry. J. Chem. Soc. Dalton Trans. 3, 259–270 (1999). (10.1039/a807732k) / J. Chem. Soc. Dalton Trans. / Structural families in nitride chemistry by Gregory D. H. (1999)
  35. H. Amano, T. Asahi, I. Akasaki, Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys. 29, L205 (1990). (10.1143/JJAP.29.L205) / Jpn. J. Appl. Phys. / Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer by Amano H. (1990)
  36. D. Fischer, M. Jansen, Synthesis and structure of Na3N. Angew. Chem. Int. Ed. Engl. 41, 1755–1756 (2002). (10.1002/1521-3773(20020517)41:10<1755::AID-ANIE1755>3.0.CO;2-C) / Angew. Chem. Int. Ed. Engl. / Synthesis and structure of Na3N by Fischer D. (2002)
  37. C. M. Caskey, R. M. Richards, D. S. Ginley, A. Zakutayev, Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater. Horiz. 1, 424–430 (2014). (10.1039/C4MH00049H) / Mater. Horiz. / Thin film synthesis and properties of copper nitride, a metastable semiconductor by Caskey C. M. (2014)
  38. J. Nyman, G. M. Day, Static and lattice vibrational energy differences between polymorphs. CrstEngComm 17, 5154–5165 (2015). (10.1039/C5CE00045A) / CrstEngComm / Static and lattice vibrational energy differences between polymorphs by Nyman J. (2015)
  39. A. J. Cruz-Cabeza, J. Bernstein, Conformational polymorphism. Chem. Rev. 114, 2170–2191 (2013). (10.1021/cr400249d) / Chem. Rev. / Conformational polymorphism by Cruz-Cabeza A. J. (2013)
  40. H. Peng, P. F. Ndione, D. S. Ginley, A. Zakutayev, S. Lany, Design of semiconducting tetrahedral Mn1−xZnxO alloys and their application to solar water splitting. Phys. Rev. X 5, 021016 (2015). / Phys. Rev. X / Design of semiconducting tetrahedral Mn1−x Zn x O alloys and their application to solar water splitting by Peng H. (2015)
  41. R. B. Soriano, I. U. Arachchige, C. D. Malliakas, J. Wu, M. G. Kanatzidis, Nanoscale stabilization of new phases in the PbTe–Sb2Te3 system: PbmSb2nTem+3n nanocrystals. J. Am. Chem. Soc. 135, 768–774 (2012). (10.1021/ja309626q) / J. Am. Chem. Soc. / Nanoscale stabilization of new phases in the PbTe–Sb2Te3 system: Pb m Sb2n Te m+3n nanocrystals by Soriano R. B. (2012)
  42. A. J. Martinolich, J. A. Kurzman, J. R. Neilson, Circumventing diffusion in kinetically-controlled solid-state metathesis reactions. J. Am. Chem. Soc. 138, 11031–11037 (2016). (10.1021/jacs.6b06367) / J. Am. Chem. Soc. / Circumventing diffusion in kinetically-controlled solid-state metathesis reactions by Martinolich A. J. (2016)
  43. 10.1021/ja01379a006
  44. T. F. T. Cerqueira, S. Lin, M. Amsler, S. Goedecker, S. Botti, M. A. L. Marques, Identification of novel Cu, Ag, and Au ternary oxides from global structural prediction. Chem. Mater. 27, 4562–4573 (2015). (10.1021/acs.chemmater.5b00716) / Chem. Mater. / Identification of novel Cu, Ag, and Au ternary oxides from global structural prediction by Cerqueira T. F. T. (2015)
  45. A. Zakutayev, X. Zhang, A. Nagaraja, L. Yu, S. Lany, T. O. Mason, D. S. Ginley, A. Zunger, Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach. J. Am. Chem. Soc. 135, 10048–10054 (2013). (10.1021/ja311599g) / J. Am. Chem. Soc. / Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach by Zakutayev A. (2013)
  46. Y. Wu, P. Lazic, G. Hautier, K. Persson, G. Ceder, First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci. 6, 157–168 (2013). (10.1039/C2EE23482C) / Energy Environ. Sci. / First principles high throughput screening of oxynitrides for water-splitting photocatalysts by Wu Y. (2013)
  47. G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, G. Ceder, Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2010). (10.1021/ic102031h) / Inorg. Chem. / Data mined ionic substitutions for the discovery of new compounds by Hautier G. (2010)
  48. V. Ozoliņš, A. Zunger, Theory of systematic absence of NaCl-type (β-Sn–type) high pressure phases in covalent (ionic) semiconductors. Phys. Rev. Lett. 82, 767 (1999). (10.1103/PhysRevLett.82.767) / Phys. Rev. Lett. / Theory of systematic absence of NaCl-type (β-Sn–type) high pressure phases in covalent (ionic) semiconductors by Ozoliņš V. (1999)
  49. A. Navrotsky, Energetics at the nanoscale: Impacts for geochemistry, the environment, and materials. MRS Bull. 41, 139–145 (2016). (10.1557/mrs.2015.336) / MRS Bull. / Energetics at the nanoscale: Impacts for geochemistry, the environment, and materials by Navrotsky A. (2016)
  50. 10.1021/nl050355m
  51. A. Navrotsky, Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 101, 12096–12101 (2004). (10.1073/pnas.0404778101) / Proc. Natl. Acad. Sci. U.S.A. / Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles by Navrotsky A. (2004)
  52. 10.1073/pnas.1423898112
  53. F. Glas, J.-C. Harmand, G. Patriarche, Why does wurtzite form in nanowires of III-V zinc blende semiconductors?. Phys. Rev. Lett. 99, 146101 (2007). (10.1103/PhysRevLett.99.146101) / Phys. Rev. Lett. / Why does wurtzite form in nanowires of III-V zinc blende semiconductors? by Glas F. (2007)
  54. W. Ostwald, Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22, 289–330 (1897). (10.1515/zpch-1897-2233) / Z. Phys. Chem. / Studien über die Bildung und Umwandlung fester Körper by Ostwald W. (1897)
  55. 10.1126/science.1254051
  56. R. A. Alberty, Use of Legendre transforms in chemical thermodynamics (IUPAC Technical Report). Pure Appl. Chem. 73, 1349–1380 (2001). (10.1351/pac200173081349) / Pure Appl. Chem. / Use of Legendre transforms in chemical thermodynamics (IUPAC Technical Report) by Alberty R. A. (2001)
  57. S. Ping Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, G. Ceder, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013). (10.1016/j.commatsci.2012.10.028) / Comput. Mater. Sci. / Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis by Ping Ong S. (2013)
  58. 10.1103/PhysRevB.54.11169
  59. 10.1016/0927-0256(96)00008-0
  60. 10.1103/PhysRevLett.77.3865
  61. 10.1103/PhysRevB.44.943
  62. A. Jain, S. Ping Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, K. A. Persson, FireWorks: A dynamic workflow system designed for high-throughput applications. Concurr. Comput. Pract. E. 27, 5037–5059 (2015). (10.1002/cpe.3505) / Concurr. Comput. Pract. E. / FireWorks: A dynamic workflow system designed for high-throughput applications by Jain A. (2015)
  63. 10.1016/j.scriptamat.2015.07.021
  64. M. Waskom O. Botvinnik P. Hobson J. Warmenhoven J. B. Cole Y. Halchenko J. Vanderplas S. Hoyer S. Villalba E. Quintero A. Miles T. Augspurger T. Yarkoni C. Evans D. Wehner L. Rocher T. Megies L. P. Coelho E. Ziegler T. Hoppe S. Seabold S. Pascual P. Cloud M. Koskinen C. Hausler kjemmett D. Milajevs A. Qalieh D. Allan K. Meyer seaborn ; http://dx.doi.org/10.5281/zenodo.19108.
Dates
Type When
Created 8 years, 9 months ago (Nov. 18, 2016, 10:30 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 11:25 a.m.)
Indexed 2 days, 18 hours ago (Aug. 21, 2025, 1:04 p.m.)
Issued 8 years, 9 months ago (Nov. 4, 2016)
Published 8 years, 9 months ago (Nov. 4, 2016)
Published Print 8 years, 9 months ago (Nov. 4, 2016)
Funders 2
  1. Basic Energy Sciences 10.13039/100006151

    Region: Americas

    gov (National government)

    Labels6
    1. Office of Basic Energy Sciences
    2. DOE Office of Basic Energy Sciences
    3. US Department of Energy's Basic Energy Sciences
    4. DOE Basic Energy Sciences
    5. Department of Energy Basic Energy Sciences Program
    6. BES
    Awards2
    1. ID0EYWAI11414
    2. DE-AC02-05CH11231
  2. Basic Energy Sciences 10.13039/100006151

    Region: Americas

    gov (National government)

    Labels6
    1. Office of Basic Energy Sciences
    2. DOE Office of Basic Energy Sciences
    3. US Department of Energy's Basic Energy Sciences
    4. DOE Basic Energy Sciences
    5. Department of Energy Basic Energy Sciences Program
    6. BES
    Awards2
    1. UGA-0-41029-16/ER392000
    2. ID0E11AI11415

@article{Sun_2016, title={The thermodynamic scale of inorganic crystalline metastability}, volume={2}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1600225}, DOI={10.1126/sciadv.1600225}, number={11}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Sun, Wenhao and Dacek, Stephen T. and Ong, Shyue Ping and Hautier, Geoffroy and Jain, Anubhav and Richards, William D. and Gamst, Anthony C. and Persson, Kristin A. and Ceder, Gerbrand}, year={2016}, month=nov }