Abstract
A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage.
References
43
Referenced
101
- http://en.wikipedia.org/wiki/Platinum.
-
J. Xie, X. Yang, B. Han, Y. Shao-Horn, D. Wang, Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities. ACS Nano 7, 6337–6345 (2013).
(
10.1021/nn402385f
) / ACS Nano / Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities by Xie J. (2013) -
R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007).
(
10.1007/s11244-007-9003-x
) / Top. Catal. / Platinum monolayer fuel cell electrocatalysts by Adzic R. R. (2007) -
J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson, R. R. Adzic, Platinum monolayer on nonnoble metal–noble metal core–shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 109, 22701–22704 (2005).
(
10.1021/jp055634c
) / J. Phys. Chem. B / Platinum monolayer on nonnoble metal–noble metal core–shell nanoparticle electrocatalysts for O2 reduction by Zhang J. (2005) 10.1126/science.1134569
-
C. Kim, J.-G. Oh, Y.-T. Kim, H. Kim, H. Lee, Platinum dendrites with controlled sizes for oxygen reduction reaction. Electrochem. Commun. 12, 1596–1599 (2010).
(
10.1016/j.elecom.2010.09.004
) / Electrochem. Commun. / Platinum dendrites with controlled sizes for oxygen reduction reaction by Kim C. (2010) -
I. J. Hsu, Y. C. Kimmel, X. Jiang, B. G. Willis, J. G. Chen, Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction. Chem. Commun. 48, 1063–1065 (2012).
(
10.1039/C1CC15812K
) / Chem. Commun. / Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction by Hsu I. J. (2012) -
Y. Liu, W. E. Mustain, Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts. Int. J. Hydrogen Energy 37, 8929–8938 (2012).
(
10.1016/j.ijhydene.2012.03.044
) / Int. J. Hydrogen Energy / Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts by Liu Y. (2012) -
I. Lombardi, S. Marchionna, G. Zangari, S. Pizzini, Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes. Langmuir 23, 12413–12420 (2007).
(
10.1021/la7016165
) / Langmuir / Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes by Lombardi I. (2007) -
P. Dai, J. Xie, M. T. Mayer, J. Zhan, D. Wang, Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew. Chem. Int. Ed. 52, 11119–11123 (2013).
(
10.1002/anie.201303813
) / Angew. Chem. Int. Ed. / Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition by Dai P. (2013) -
J. M. Tang, K. Jensen, M. Waje, W. Li, P. Larsen, K. Pauley, Z. Chen, P. Ramesh, M. E. Itkis, Y. Yan, R. C. Haddon, High performance hydrogen Fuel Cells with ultralow Pt loading carbon nanotube thin film catalysts. J. Phys. Chem. C 111, 17901–17904 (2007).
(
10.1021/jp071469k
) / J. Phys. Chem. C / High performance hydrogen Fuel Cells with ultralow Pt loading carbon nanotube thin film catalysts by Tang J. M. (2007) -
G. Wang, B. Huang, L. Xiao, Z. Ren, H. Chen, D. Wang, H. D. Abruña, J. Lu, L. Zhuang, Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells. J. Am. Chem. Soc. 136, 9643–9649 (2014).
(
10.1021/ja503315s
) / J. Am. Chem. Soc. / Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells by Wang G. (2014) -
X. Yan, X. Ge, S. Cui, Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res. Lett. 6, 313 (2011).
(
10.1186/1556-276X-6-313
) / Nanoscale Res. Lett. / Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions by Yan X. (2011) -
A. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 110, 3767–3804 (2010).
(
10.1021/cr9003902
) / Chem. Rev. / Platinum-based nanostructured materials: Synthesis, properties, and applications by Chen A. (2010) -
N. Jha, P. Ramesh, E. Bekyarova, X. Tian, F. Wang, M. E. Itkis, R. C. Haddon, Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci. Rep. 3, 2257 (2013).
(
10.1038/srep02257
) / Sci. Rep. / Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets by Jha N. (2013) - US-DRIVE 27 July 2011: Fuel Cell Technical Team Technology Roadmap: Target Tables www.uscar.org/commands/files_download.php?files_id=279.
10.1126/science.1215864
-
S. R. Brankovic, J. X. Wang, R. R. Adžić, Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci. 474, L173–L179 (2001).
(
10.1016/S0039-6028(00)01103-1
) / Surf. Sci. / Metal monolayer deposition by replacement of metal adlayers on electrode surfaces by Brankovic S. R. (2001) -
M. Li, P. Liu, R. R. Adzic, Platinum monolayer electrocatalysts for anodic oxidation of alcohols. J. Phys. Chem. Lett. 3, 3480–3485 (2012).
(
10.1021/jz3016155
) / J. Phys. Chem. Lett. / Platinum monolayer electrocatalysts for anodic oxidation of alcohols by Li M. (2012) -
J. Kye, M. Shin, B. Lim, J.-W. Jang, I. Oh, S. Hwang, Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano 7, 6017–6023 (2013).
(
10.1021/nn401720x
) / ACS Nano / Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution by Kye J. (2013) -
Y. Ding, A. Mathur, M. Chen, J. Erlebacher, Epitaxial casting of nanotubular mesoporous platinum. Angew. Chem. Int. Ed. 44, 4002–4006 (2005).
(
10.1002/anie.200463106
) / Angew. Chem. Int. Ed. / Epitaxial casting of nanotubular mesoporous platinum by Ding Y. (2005) -
H. I. Karan, K. Sasaki, K. Kuttiyiel, C. A. Farberow, M. Mavrikakis, R. R. Adzic, Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction. ACS Catal. 2, 817–824 (2012).
(
10.1021/cs200592x
) / ACS Catal. / Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction by Karan H. I. (2012) -
J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, R. R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108, 10955–10964 (2004).
(
10.1021/jp0379953
) / J. Phys. Chem. B / Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles by Zhang J. (2004) -
K.-S. Lee, S. J. Yoo, D. Ahn, T.-Y. Jeon, K. H. Choi, I.-S. Park, Y.-E. Sung, Surface structures and electrochemical activities of Pt overlayers on Ir nanoparticles. Langmuir 27, 3128–3137 (2011).
(
10.1021/la103825s
) / Langmuir / Surface structures and electrochemical activities of Pt overlayers on Ir nanoparticles by Lee K.-S. (2011) 10.1126/science.1228925
-
R. Loukrakpam, S. R. Brankovic, P. Strasser, A study of Au/C nanoparticles with Pt monolayer and sub-monolayer electrocatalysts for ethanol oxidation reaction. ECS Trans. 58, 1733–1736 (2013).
(
10.1149/05801.1733ecst
) / ECS Trans. / A study of Au/C nanoparticles with Pt monolayer and sub-monolayer electrocatalysts for ethanol oxidation reaction by Loukrakpam R. (2013) -
K. Sasaki, H. Naohara, Y. M. Choi, Y. Cai, W.-F. Chen, P. Liu, R. R. Adzic, Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012).
(
10.1038/ncomms2124
) / Nat. Commun. / Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction by Sasaki K. (2012) 10.1039/b801115j
-
A. Jablonski, C. J. Powell, Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths. J, Electron Spectros. Relat. Phenomena 100, 137–160 (1999).
(
10.1016/S0368-2048(99)00044-4
) / J, Electron Spectros. Relat. Phenomena / Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths by Jablonski A. (1999) 10.1126/science.1258307
-
R. Wu, J. Zhang, Y. Shi, D. Liu, B. Zhang, Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 6983–6986 (2015).
(
10.1021/jacs.5b01330
) / J. Am. Chem. Soc. / Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction by Wu R. (2015) -
D. Gokcen, S.-E. Bae, S. R. Brankovic, Stoichiometry of Pt submonolayer deposition via surface-limited redox replacement reaction. J. Electrochem. Soc. 157, D582–D587 (2010).
(
10.1149/1.3490416
) / J. Electrochem. Soc. / Stoichiometry of Pt submonolayer deposition via surface-limited redox replacement reaction by Gokcen D. (2010) -
Y. G. Kim, J. Y. Kim, D. Vairavapandian, J. L. Stickney, Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: Studies using in-situ scanning tunneling microscopy. J. Phys. Chem. B 110, 17998–18006 (2006).
(
10.1021/jp063766f
) / J. Phys. Chem. B / Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: Studies using in-situ scanning tunneling microscopy by Kim Y. G. (2006) 10.1126/science.1209816
10.1021/cs300691m
-
Y. Sun, J. Lu, L. Zhuang, Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts. Electrochim. Acta 55, 844–850 (2010).
(
10.1016/j.electacta.2009.09.047
) / Electrochim. Acta / Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts by Sun Y. (2010) -
K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, Study of the exchange current density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154, B631–B635 (2007).
(
10.1149/1.2733987
) / J. Electrochem. Soc. / Study of the exchange current density for the hydrogen oxidation and evolution reactions by Neyerlin K. C. (2007) -
Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, I. Chorkendorff, Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434–438 (2011).
(
10.1038/nmat3008
) / Nat. Mater. / Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution by Hou Y. (2011) -
E. Herrero, L. J. Buller, H. D. Abruña, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).
(
10.1021/cr9600363
) / Chem. Rev. / Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials by Herrero E. (2001) -
A. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell, T. D. Tilley, Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009).
(
10.1021/jp904022e
) / J. Phys. Chem. C / Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis by Esswein A. J. (2009) - D. T. Sawyer A. Sobkowiak J. L. Roberts Electrochemistry for Chemists (John Wiley & Sons New York ed. 2 1995).
-
E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427–5430 (2014).
(
10.1002/anie.201402646
) / Angew. Chem. Int. Ed. / Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles by Popczun E. J. (2014) - N. Fairley CasaXPS Manual 2.3.15 Rev 1.2 (Casa Software Ltd. Teignmouth UK 2009).
Dates
Type | When |
---|---|
Created | 9 years, 11 months ago (Sept. 4, 2015, 10:49 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 2:17 p.m.) |
Indexed | 3 weeks, 3 days ago (July 30, 2025, 9:02 a.m.) |
Issued | 9 years, 11 months ago (Sept. 4, 2015) |
Published | 9 years, 11 months ago (Sept. 4, 2015) |
Published Print | 9 years, 11 months ago (Sept. 4, 2015) |
Funders
3
Thousand Talents Program, Chinese National University Research Fund
Awards
2
- GK261001009
- ID0E3LBG2258
Program for Changjiang Scholars and Innovative Research Team in University
10.13039/501100018621
Region: Asia
gov (National government)
Labels
2
- 长江学者和创新团队发展计划资助资助
- Program for Yangtze River Scholars and Innovative Research Team in University
Awards
2
- ID0ELRBG2259
- IRT_14R33
The Overseas Talent Recruitment Project
Awards
2
- B14041
- ID0E1WBG2260
@article{Li_2015, title={Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction}, volume={1}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1400268}, DOI={10.1126/sciadv.1400268}, number={8}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Li, Man and Ma, Qiang and Zi, Wei and Liu, Xiaojing and Zhu, Xuejie and Liu, Shengzhong (Frank)}, year={2015}, month=sep }