Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science Advances (221)
Abstract

A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage.

Bibliography

Li, M., Ma, Q., Zi, W., Liu, X., Zhu, X., & Liu, S. (Frank). (2015). Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Science Advances, 1(8).

Authors 6
  1. Man Li (first)
  2. Qiang Ma (additional)
  3. Wei Zi (additional)
  4. Xiaojing Liu (additional)
  5. Xuejie Zhu (additional)
  6. Shengzhong (Frank) Liu (additional)
References 43 Referenced 101
  1. http://en.wikipedia.org/wiki/Platinum.
  2. J. Xie, X. Yang, B. Han, Y. Shao-Horn, D. Wang, Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities. ACS Nano 7, 6337–6345 (2013). (10.1021/nn402385f) / ACS Nano / Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities by Xie J. (2013)
  3. R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007). (10.1007/s11244-007-9003-x) / Top. Catal. / Platinum monolayer fuel cell electrocatalysts by Adzic R. R. (2007)
  4. J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson, R. R. Adzic, Platinum monolayer on nonnoble metal–noble metal core–shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 109, 22701–22704 (2005). (10.1021/jp055634c) / J. Phys. Chem. B / Platinum monolayer on nonnoble metal–noble metal core–shell nanoparticle electrocatalysts for O2 reduction by Zhang J. (2005)
  5. 10.1126/science.1134569
  6. C. Kim, J.-G. Oh, Y.-T. Kim, H. Kim, H. Lee, Platinum dendrites with controlled sizes for oxygen reduction reaction. Electrochem. Commun. 12, 1596–1599 (2010). (10.1016/j.elecom.2010.09.004) / Electrochem. Commun. / Platinum dendrites with controlled sizes for oxygen reduction reaction by Kim C. (2010)
  7. I. J. Hsu, Y. C. Kimmel, X. Jiang, B. G. Willis, J. G. Chen, Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction. Chem. Commun. 48, 1063–1065 (2012). (10.1039/C1CC15812K) / Chem. Commun. / Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction by Hsu I. J. (2012)
  8. Y. Liu, W. E. Mustain, Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts. Int. J. Hydrogen Energy 37, 8929–8938 (2012). (10.1016/j.ijhydene.2012.03.044) / Int. J. Hydrogen Energy / Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts by Liu Y. (2012)
  9. I. Lombardi, S. Marchionna, G. Zangari, S. Pizzini, Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes. Langmuir 23, 12413–12420 (2007). (10.1021/la7016165) / Langmuir / Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes by Lombardi I. (2007)
  10. P. Dai, J. Xie, M. T. Mayer, J. Zhan, D. Wang, Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew. Chem. Int. Ed. 52, 11119–11123 (2013). (10.1002/anie.201303813) / Angew. Chem. Int. Ed. / Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition by Dai P. (2013)
  11. J. M. Tang, K. Jensen, M. Waje, W. Li, P. Larsen, K. Pauley, Z. Chen, P. Ramesh, M. E. Itkis, Y. Yan, R. C. Haddon, High performance hydrogen Fuel Cells with ultralow Pt loading carbon nanotube thin film catalysts. J. Phys. Chem. C 111, 17901–17904 (2007). (10.1021/jp071469k) / J. Phys. Chem. C / High performance hydrogen Fuel Cells with ultralow Pt loading carbon nanotube thin film catalysts by Tang J. M. (2007)
  12. G. Wang, B. Huang, L. Xiao, Z. Ren, H. Chen, D. Wang, H. D. Abruña, J. Lu, L. Zhuang, Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells. J. Am. Chem. Soc. 136, 9643–9649 (2014). (10.1021/ja503315s) / J. Am. Chem. Soc. / Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells by Wang G. (2014)
  13. X. Yan, X. Ge, S. Cui, Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res. Lett. 6, 313 (2011). (10.1186/1556-276X-6-313) / Nanoscale Res. Lett. / Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions by Yan X. (2011)
  14. A. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 110, 3767–3804 (2010). (10.1021/cr9003902) / Chem. Rev. / Platinum-based nanostructured materials: Synthesis, properties, and applications by Chen A. (2010)
  15. N. Jha, P. Ramesh, E. Bekyarova, X. Tian, F. Wang, M. E. Itkis, R. C. Haddon, Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci. Rep. 3, 2257 (2013). (10.1038/srep02257) / Sci. Rep. / Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets by Jha N. (2013)
  16. US-DRIVE 27 July 2011: Fuel Cell Technical Team Technology Roadmap: Target Tables www.uscar.org/commands/files_download.php?files_id=279.
  17. 10.1126/science.1215864
  18. S. R. Brankovic, J. X. Wang, R. R. Adžić, Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci. 474, L173–L179 (2001). (10.1016/S0039-6028(00)01103-1) / Surf. Sci. / Metal monolayer deposition by replacement of metal adlayers on electrode surfaces by Brankovic S. R. (2001)
  19. M. Li, P. Liu, R. R. Adzic, Platinum monolayer electrocatalysts for anodic oxidation of alcohols. J. Phys. Chem. Lett. 3, 3480–3485 (2012). (10.1021/jz3016155) / J. Phys. Chem. Lett. / Platinum monolayer electrocatalysts for anodic oxidation of alcohols by Li M. (2012)
  20. J. Kye, M. Shin, B. Lim, J.-W. Jang, I. Oh, S. Hwang, Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano 7, 6017–6023 (2013). (10.1021/nn401720x) / ACS Nano / Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution by Kye J. (2013)
  21. Y. Ding, A. Mathur, M. Chen, J. Erlebacher, Epitaxial casting of nanotubular mesoporous platinum. Angew. Chem. Int. Ed. 44, 4002–4006 (2005). (10.1002/anie.200463106) / Angew. Chem. Int. Ed. / Epitaxial casting of nanotubular mesoporous platinum by Ding Y. (2005)
  22. H. I. Karan, K. Sasaki, K. Kuttiyiel, C. A. Farberow, M. Mavrikakis, R. R. Adzic, Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction. ACS Catal. 2, 817–824 (2012). (10.1021/cs200592x) / ACS Catal. / Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction by Karan H. I. (2012)
  23. J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, R. R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108, 10955–10964 (2004). (10.1021/jp0379953) / J. Phys. Chem. B / Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles by Zhang J. (2004)
  24. K.-S. Lee, S. J. Yoo, D. Ahn, T.-Y. Jeon, K. H. Choi, I.-S. Park, Y.-E. Sung, Surface structures and electrochemical activities of Pt overlayers on Ir nanoparticles. Langmuir 27, 3128–3137 (2011). (10.1021/la103825s) / Langmuir / Surface structures and electrochemical activities of Pt overlayers on Ir nanoparticles by Lee K.-S. (2011)
  25. 10.1126/science.1228925
  26. R. Loukrakpam, S. R. Brankovic, P. Strasser, A study of Au/C nanoparticles with Pt monolayer and sub-monolayer electrocatalysts for ethanol oxidation reaction. ECS Trans. 58, 1733–1736 (2013). (10.1149/05801.1733ecst) / ECS Trans. / A study of Au/C nanoparticles with Pt monolayer and sub-monolayer electrocatalysts for ethanol oxidation reaction by Loukrakpam R. (2013)
  27. K. Sasaki, H. Naohara, Y. M. Choi, Y. Cai, W.-F. Chen, P. Liu, R. R. Adzic, Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012). (10.1038/ncomms2124) / Nat. Commun. / Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction by Sasaki K. (2012)
  28. 10.1039/b801115j
  29. A. Jablonski, C. J. Powell, Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths. J, Electron Spectros. Relat. Phenomena 100, 137–160 (1999). (10.1016/S0368-2048(99)00044-4) / J, Electron Spectros. Relat. Phenomena / Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths by Jablonski A. (1999)
  30. 10.1126/science.1258307
  31. R. Wu, J. Zhang, Y. Shi, D. Liu, B. Zhang, Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 6983–6986 (2015). (10.1021/jacs.5b01330) / J. Am. Chem. Soc. / Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction by Wu R. (2015)
  32. D. Gokcen, S.-E. Bae, S. R. Brankovic, Stoichiometry of Pt submonolayer deposition via surface-limited redox replacement reaction. J. Electrochem. Soc. 157, D582–D587 (2010). (10.1149/1.3490416) / J. Electrochem. Soc. / Stoichiometry of Pt submonolayer deposition via surface-limited redox replacement reaction by Gokcen D. (2010)
  33. Y. G. Kim, J. Y. Kim, D. Vairavapandian, J. L. Stickney, Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: Studies using in-situ scanning tunneling microscopy. J. Phys. Chem. B 110, 17998–18006 (2006). (10.1021/jp063766f) / J. Phys. Chem. B / Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: Studies using in-situ scanning tunneling microscopy by Kim Y. G. (2006)
  34. 10.1126/science.1209816
  35. 10.1021/cs300691m
  36. Y. Sun, J. Lu, L. Zhuang, Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts. Electrochim. Acta 55, 844–850 (2010). (10.1016/j.electacta.2009.09.047) / Electrochim. Acta / Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts by Sun Y. (2010)
  37. K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, Study of the exchange current density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154, B631–B635 (2007). (10.1149/1.2733987) / J. Electrochem. Soc. / Study of the exchange current density for the hydrogen oxidation and evolution reactions by Neyerlin K. C. (2007)
  38. Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, I. Chorkendorff, Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434–438 (2011). (10.1038/nmat3008) / Nat. Mater. / Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution by Hou Y. (2011)
  39. E. Herrero, L. J. Buller, H. D. Abruña, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001). (10.1021/cr9600363) / Chem. Rev. / Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials by Herrero E. (2001)
  40. A. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell, T. D. Tilley, Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009). (10.1021/jp904022e) / J. Phys. Chem. C / Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis by Esswein A. J. (2009)
  41. D. T. Sawyer A. Sobkowiak J. L. Roberts Electrochemistry for Chemists (John Wiley & Sons New York ed. 2 1995).
  42. E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427–5430 (2014). (10.1002/anie.201402646) / Angew. Chem. Int. Ed. / Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles by Popczun E. J. (2014)
  43. N. Fairley CasaXPS Manual 2.3.15 Rev 1.2 (Casa Software Ltd. Teignmouth UK 2009).
Dates
Type When
Created 9 years, 11 months ago (Sept. 4, 2015, 10:49 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 2:17 p.m.)
Indexed 3 weeks, 3 days ago (July 30, 2025, 9:02 a.m.)
Issued 9 years, 11 months ago (Sept. 4, 2015)
Published 9 years, 11 months ago (Sept. 4, 2015)
Published Print 9 years, 11 months ago (Sept. 4, 2015)
Funders 3
  1. Thousand Talents Program, Chinese National University Research Fund
    Awards2
    1. GK261001009
    2. ID0E3LBG2258
  2. Program for Changjiang Scholars and Innovative Research Team in University 10.13039/501100018621

    Region: Asia

    gov (National government)

    Labels2
    1. 长江学者和创新团队发展计划资助资助
    2. Program for Yangtze River Scholars and Innovative Research Team in University
    Awards2
    1. ID0ELRBG2259
    2. IRT_14R33
  3. The Overseas Talent Recruitment Project
    Awards2
    1. B14041
    2. ID0E1WBG2260

@article{Li_2015, title={Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction}, volume={1}, ISSN={2375-2548}, url={http://dx.doi.org/10.1126/sciadv.1400268}, DOI={10.1126/sciadv.1400268}, number={8}, journal={Science Advances}, publisher={American Association for the Advancement of Science (AAAS)}, author={Li, Man and Ma, Qiang and Zi, Wei and Liu, Xiaojing and Zhu, Xuejie and Liu, Shengzhong (Frank)}, year={2015}, month=sep }