Abstract
Sputter-deposited W films with nominal thicknesses between 5 and 180 nm were prepared by varying the base pressure prior to film deposition and by including or not including sputtered SiO2 encapsulation layers. X-ray and electron diffraction studies showed that single phase, polycrystalline α-W could be achieved in as-deposited films as thin as 5 nm. The stress state in the as-deposited films was found to be inhomogeneous. Annealing resulted in stress relaxation and reduction of resistivity for all films, except the thinnest, unencapsulated film, which agglomerated. In-plane film grain sizes measured for a subset of the annealed films with thicknesses between 5 and 180 nm surprisingly showed a near constant value (101–116 nm), independent of film thickness. Thick-film (≥120 nm) resistivity values as low as 8.6 μΩ cm at 301 K were obtained after annealing at 850 °C for 2 h. Film resistivities were found to increase with decreasing film thicknesses below 120 nm, even for films which are fully A2 α-W with no metastable, A15 β-W evident.
Bibliography
Choi, D., Wang, B., Chung, S., Liu, X., Darbal, A., Wise, A., Nuhfer, N. T., Barmak, K., Warren, A. P., Coffey, K. R., & Toney, M. F. (2011). Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(5).
References
46
Referenced
101
10.1109/55.735762
/ IEEE Electron Device Lett. (1998)10.1116/1.2938395
/ J. Vac. Sci. Technol.A (2008)10.1103/PhysRevB.79.041402
/ Phys. Rev.B (2009)10.1103/PhysRevB.81.155454
/ Phys. Rev.B (2010){'key': '2023062903311011100_c5'}
10.1063/1.123974
/ Appl. Phys. Lett. (1999)10.1063/1.372082
/ J. Appl. Phys. (2000)10.1109/TDMR.2005.846308
/ IEEE Transs. Device Mater. Reliab. (2005)10.1038/nature02674
/ Nature (London) (2004)10.1109/TED.2006.882035
/ IEEE Transs.Electron Devices (2006)10.1038/nnano.2007.300
/ Nat. Nanotechnol. (2007)10.1117/12.591163
/ Proc. SPIE (2005){'key': '2023062903311011100_c13'}
10.1116/1.1506905
/ J. Vac. Sci. Technol.B (2002)10.1088/0305-4608/8/11/026
/ J. Phys.F: Met. Phys. (1978){'key': '2023062903311011100_c16'}
{'key': '2023062903311011100_c17', 'article-title': 'This value is obtained by assuming an EMPF of 2 nm, and a Matthiessen’s rule summation of surface and grain boundary scattering with their associated parameters taken from Ref. 4 for both Cu and W. The values of TaN/Ta adhesion-diffusion barrier thicknesses used in the calculation of Cu line resistivities are taken from ITRS 2007'}
/ This value is obtained by assuming an EMPF of 2 nm, and a Matthiessen’s rule summation of surface and grain boundary scattering with their associated parameters taken from Ref. 4 for both Cu and W. The values of TaN/Ta adhesion-diffusion barrier thicknesses used in the calculation of Cu line resistivities are taken from ITRS 200710.1016/j.microrel.2003.10.020
/ Microelectron. Reliab. (2004){'volume-title': 'Proceedings of the IEEE Interconnect Technology Conference', 'year': '2001', 'key': '2023062903311011100_c19'}
/ Proceedings of the IEEE Interconnect Technology Conference (2001){'key': '2023062903311011100_c20', 'article-title': 'The barrier metal thickness for Cu metal 1 wiring is expected to be 2.9 nm for 2011 according to ITRS 2007'}
/ The barrier metal thickness for Cu metal 1 wiring is expected to be 2.9 nm for 2011 according to ITRS 200710.1016/S0040-6090(96)09557-0
/ Thin Solid Films (1997)10.1116/1.2166859
/ J. Vac. Sci. Technol.B (2006)10.1116/1.1355759
/ J. Vac. Sci. Technol.A (2001)10.1116/1.1642651
/ J. Vac. Sci. Technol.A (2004)10.1063/1.362584
/ J. Appl. Phys. (1996)10.1116/1.576301
/ J. Vac. Sci. Technol.A (1989)10.1149/1.3155430
/ J. Electrochem. Soc. (2009)10.1016/j.mee.2005.07.033
/ Microelectronic Eng. (2006)10.1149/1.2035703
/ Electrochem.Solid-State Lett. (2005)10.1063/1.366237
/ J. Appl. Phys. (1997){'volume-title': 'Micron', 'key': '2023062903311011100_c31', 'article-title': 'Grain size quantification of nanocrystalline materials in the TEM using conical dark field imaging'}
/ Micron / Grain size quantification of nanocrystalline materials in the TEM using conical dark field imaging10.1007/s00604-006-0502-4
/ Microchim. Acta (2006)10.1063/1.368898
/ J. Appl. Phys. (1998){'key': '2023062903311011100_c34', 'first-page': '1', 'volume': '13', 'year': '1958', 'journal-title': 'Philips Res. Rep.'}
/ Philips Res. Rep. (1958)10.1146/annurev.matsci.30.1.159
/ Annu. Rev. Mater. Sci. (2000)10.1146/annurev.ms.07.080177.001323
/ Annu. Rev. Mater. Sci. (1977)10.1016/0040-6090(89)90035-7
/ Thin Solid Films (1989)10.1016/0040-6090(89)90030-8
/ Thin Solid Films (1989)10.1103/PhysRevLett.88.156103
/ Phys. Rev. Lett. (2002)10.1063/1.111318
/ Appl. Phys. Lett. (1994)10.1116/1.575770
/ J. Vac. Sci. Technol.A (1989)10.1063/1.1618944
/ Appl. Phys. Lett. (2003)10.1063/1.354842
/ J. Appl. Phys. (1993)10.1017/S0305004100019952
/ Proc. Cambridge Philos. Soc. (1938)10.1080/00018735200101151
/ Adv. Phys. (1952)10.1103/PhysRevB.1.1382
/ Phys. Rev.B (1970)
Dates
Type | When |
---|---|
Created | 14 years ago (Aug. 15, 2011, 6:18 p.m.) |
Deposited | 2 years, 1 month ago (June 28, 2023, 11:31 p.m.) |
Indexed | 2 days, 15 hours ago (Aug. 21, 2025, 2 p.m.) |
Issued | 14 years ago (Aug. 15, 2011) |
Published | 14 years ago (Aug. 15, 2011) |
Published Online | 14 years ago (Aug. 15, 2011) |
Published Print | 13 years, 11 months ago (Sept. 1, 2011) |
@article{Choi_2011, title={Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films}, volume={29}, ISSN={1520-8559}, url={http://dx.doi.org/10.1116/1.3622619}, DOI={10.1116/1.3622619}, number={5}, journal={Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films}, publisher={American Vacuum Society}, author={Choi, Dooho and Wang, Bincheng and Chung, Suk and Liu, Xuan and Darbal, Amith and Wise, Adam and Nuhfer, Noel T. and Barmak, Katayun and Warren, Andrew P. and Coffey, Kevin R. and Toney, Michael F.}, year={2011}, month=aug }