Abstract
Dynamic mode electrostatic force microscopy is a technique capable of measuring the internal voltage signals of high-speed integrated circuits. Circuit signals are extracted by utilizing the localized nonlinear Coulomb force acting on a microfabricated probe that is closely positioned above the circuit test point. Equivalent time sampling of repetitive high-frequency signals, that can have a bandwidth much greater than the mechanical response of the probe, is achieved by driving the probe with amplitude-modulated high-speed pulses. Currently, dynamic mode electrostatic force microscopes (DEFMs) extract circuit voltage signals through direct sensing of the electrostatic interaction which results in a poor spatial resolution and is susceptible to interference due to significant coupling to the tip sidewall and the cantilever support of the probe. This is especially true for large tip-to-sample distances such as when passivated circuits are measured. This article describes a force-gradient method to improve the spatial resolution of DEFM. The force-gradient method is implemented numerically and is based on sensing the force as the tip-sample distance is modulated. The method is shown to reduce the contribution from the tip sidewall and the cantilever. Measurements of high-speed signals up to 500 Mb/s demonstrate a significant reduction of interference signals.
References
23
Referenced
2
10.1063/1.127019
/ Appl. Phys. Lett. (2000){'key': '2023080821132890600_r2'}
10.1147/rd.444.0583
/ IBM J. Res. Dev. (2000)10.1049/el:19921481
/ Electron. Lett. (1992)10.1049/el:19930969
/ Electron. Lett. (1993)10.1063/1.120798
/ Appl. Phys. Lett. (1998)10.1063/1.109437
/ Appl. Phys. Lett. (1993)10.1007/BF00820151
/ Opt. Quantum Electron. (1996)10.1049/el:19991154
/ Electron. Lett. (1999)10.1049/el:19980185
/ Electron. Lett. (1998)10.1116/1.1460901
/ J. Vac. Sci. Technol. A (2002)10.1088/0957-4484/12/4/323
/ Nanotechnology (2001)10.1088/0957-4484/14/2/345
/ Nanotechnology (2003)10.1063/1.1384004
/ Appl. Phys. Lett. (2001)10.1016/S0026-2714(98)00118-8
/ Microelectron. Reliab. (1998)10.1063/1.338807
/ J. Appl. Phys. (1987)10.1103/PhysRevLett.63.2669
/ Phys. Rev. Lett. (1989)10.1116/1.1490387
/ J. Vac. Sci. Technol. B (2002)10.1063/1.110437
/ Appl. Phys. Lett. (1993)10.1063/1.347347
/ J. Appl. Phys. (1991){'key': '2023080821132890600_r21'}
10.1016/0167-9317(92)90342-O
/ Microelectron. Eng. (1992){'key': '2023080821132890600_r23', 'first-page': '321', 'volume': '42–44', 'year': '1992', 'journal-title': 'Ultramicroscopy'}
/ Ultramicroscopy (1992)
Dates
Type | When |
---|---|
Created | 21 years, 3 months ago (May 18, 2004, 6:05 p.m.) |
Deposited | 2 years ago (Aug. 8, 2023, 5:13 p.m.) |
Indexed | 2 years ago (Aug. 8, 2023, 5:40 p.m.) |
Issued | 21 years, 4 months ago (May 1, 2004) |
Published | 21 years, 4 months ago (May 1, 2004) |
Published Online | 21 years, 3 months ago (May 18, 2004) |
Published Print | 21 years, 4 months ago (May 1, 2004) |
@article{Weng_2004, title={Resolution enhancement in probing of high-speed integrated circuits using dynamic electrostatic force-gradient microscopy}, volume={22}, ISSN={1520-8559}, url={http://dx.doi.org/10.1116/1.1691080}, DOI={10.1116/1.1691080}, number={3}, journal={Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films}, publisher={American Vacuum Society}, author={Weng, Z. and Kaminski, T. and Bridges, G. E. and Thomson, D. J.}, year={2004}, month=may, pages={948–953} }