Crossref journal-article
ASME International
Journal of Heat Transfer (33)
Abstract

We report finite-volume simulations of the phonon Boltzmann transport equation (BTE) for heat conduction across the heterogeneous interfaces in SiGe superlattices. The diffuse mismatch model incorporating phonon dispersion and polarization is implemented over a wide range of Knudsen numbers. The results indicate that the thermal conductivity of a Si/Ge superlattice is much lower than that of the constitutive bulk materials for superlattice periods in the submicron regime. We report results for effective thermal conductivity of various material volume fractions and superlattice periods. Details of the nonequilibrium energy exchange between optical and acoustic phonons that originate from the mismatch of phonon spectra in silicon and germanium are delineated for the first time. Conditions are identified for which this effect can produce significantly more thermal resistance than that due to boundary scattering of phonons.

Bibliography

Singh, D., Murthy, J. Y., & Fisher, T. S. (2011). Effect of Phonon Dispersion on Thermal Conduction Across Si/Ge Interfaces. Journal of Heat Transfer, 133(12).

Authors 3
  1. Dhruv Singh (first)
  2. Jayathi Y. Murthy (additional)
  3. Timothy S. Fisher (additional)
References 55 Referenced 61
  1. 10.1063/1.1524305 / J. Appl. Phys. / “Nanoscale Thermal Transport,” by Cahill
  2. 10.1063/1.1906316 / Appl. Phys. Lett. / “Carbon Nanotubes-Semiconductor Networks for Organic Electronics: The Pickup Stick Transistor,” by Bo
  3. 10.1063/1.2510998 / J. Appl. Phys. / “Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces,” by Cola
  4. {'first-page': '1', 'volume-title': 'Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III', 'author': 'Dresselhaus', 'key': '2019100516390070300_c4'} / Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III by Dresselhaus
  5. {'volume-title': 'Thermoelectrics—Macro to Nano', 'author': 'Rowe', 'key': '2019100516390070300_c5'} / Thermoelectrics—Macro to Nano by Rowe
  6. 10.1063/1.1616981 / Appl. Phys. Lett. / “Thermal Conductivity of Individual Silicon Nanowires,” by Li
  7. 10.1103/PhysRevLett.87.215502 / Phys. Rev. Lett. / “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” by Kim
  8. 10.1063/1.119402 / Appl. Phys. Lett. / “Phonon-Boundary Scattering in Thin Silicon Layers,” by Asheghi
  9. 10.1063/1.1427134 / J. Appl. Phys. / “Size Effect on the Thermal Conductivity of Nanowires,” by
  10. {'key': '2019100516390070300_c10', 'first-page': '545', 'article-title': '“The Electrical Conductivity of Thin Wires,”', 'volume': 'A 201', 'author': 'Dingle', 'journal-title': 'Proceedings of the Royal Society (London)'} / Proceedings of the Royal Society (London) / “The Electrical Conductivity of Thin Wires,” by Dingle
  11. 10.1080/00018735200101151 / Adv. Phys. / “The Mean Free Path of Electrons in Metals,” by Sondheimer
  12. 10.1021/nl034721i / Nano Lett. / “Predicting the Thermal Conductivity of Si and Ge Nanowires,” by Mingo
  13. 10.1103/PhysRevB.76.195429 / Phys. Rev. B / “Simulation of Phonon Transport Across a Nonpolar Nanowire Junction Using an Atomistic Green’s Function Method,” by Zhang
  14. 10.1115/1.2709656 / ASME J. Heat Transfer / “Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method,” by Zhang
  15. 10.1063/1.2787162 / J. Appl. Phys. / “Quantum Modeling of Thermoelectric Performance of Strained Si/Ge/Si Superlattices Using the Nonequilibrium Green’s Function Method,” by Bulusu
  16. 10.1103/PhysRevLett.84.927 / Phys. Rev. Lett. / Minimum Thermal Conductivity of Superlattices by Simkin
  17. 10.1103/PhysRevB.61.3091 / Phys. Rev. B / Lattice Thermal Conductivity Reduction and Phonon Localization Like Behavior in Superlattice Structures by Venkatasubramanian
  18. 10.1103/PhysRevB.72.174302 / Phys. Rev. B / “Minimum Superlattice Thermal Conductivity From Molecular Dynamics,” by Chen
  19. 10.1103/PhysRevB.79.075316 / Phys. Rev. B / Effect of Interfacial Species Mixing on Phonon Transport in Semiconductor Superlattices by Landry
  20. 10.1139/p59-037 / Can. J. Phys. / “The Transport of Heat Between Dissimilar Solids at Low Temperatures,” by Little
  21. 10.1103/RevModPhys.61.605 / Rev. Mod. Phys. / Thermal Boundary Resistance by Swartz
  22. 10.1063/1.1702100 / J. Appl. Phys. / Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation by Schelling
  23. 10.1063/1.1465106 / Appl. Phys. Lett. / Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation by Schelling
  24. {'article-title': '“Molecular Dynamics Simulation of Phonon Scattering at Rough Semiconductor Surfaces,”', 'volume-title': 'Proceedings of ITHERM 2008', 'author': 'Sun', 'key': '2019100516390070300_c24'} / Proceedings of ITHERM 2008 / “Molecular Dynamics Simulation of Phonon Scattering at Rough Semiconductor Surfaces,” by Sun
  25. 10.1063/1.3054383 / J. Appl. Phys. / “Phonon Scattering at a Rough Interface Between Two fcc Lattices,” by Zhao
  26. 10.1103/PhysRevB.25.3750 / Phys. Rev. B / Thermal Conductivity of Superlattices by Ren
  27. 10.1103/PhysRevB.70.081310 / Phys. Rev. B / “Lattice Thermal Conductivity of Superlattice Structures,” by Broido
  28. 10.1103/PhysRevB.77.245328 / Phys. Rev. B / “Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattices,” by Ward
  29. 10.1080/108939597200296 / Microscale Thermophys. Eng. / Heat Transport in Dielectric Thin Films and at Solid–Solid Interfaces by Cahill
  30. 10.1063/1.118755 / Appl. Phys. Lett. / Thermal Conductivity of Si–Ge Superlattices by Lee
  31. 10.1103/PhysRevB.57.14958 / Phys. Rev. B / Thermal Conductivity and Ballistic Phonon Transport in the Cross-Plane Direction of Superlattices by Chen
  32. 10.1006/spmi.2000.0900 / Superlattices Microstruct. / Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices by Borca-Tasciuc
  33. 10.1063/1.1455693 / Appl. Phys. Lett. / Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices by Huxtable
  34. 10.1063/1.1619221 / Appl. Phys. Lett. / Thermal Conductivity of Si/SiGe Superlattice Nanowires by Li
  35. 10.1063/1.1631734 / J. Appl. Phys. / Theoretical Phonon Thermal Conductivity of Si–Ge Superlattice Nanowires by Dames
  36. 10.1063/1.120126 / Appl. Phys. Lett. / Thermal Conductivity and Heat Transfer in Superlattices by Chen
  37. 10.1115/1.2824212 / ASME J. Heat Transfer / Size and Interface Effects on the Thermal Conductivity of Superlattices and Periodic Thin Film Structures by Chen
  38. 10.1103/PhysRevB.69.195316 / Phys. Rev. B / “Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposities,” by Yang
  39. 10.1063/1.2767870 / J. Appl. Phys. / “Limits of Size Confinement in Silicon Thin Films and Wires,” by Pascual-Gutiérrez
  40. 10.1615/IntJMultCompEng.v3.i1.20 / Int. J. Multiscale Comp. Eng. / Review of Multiscale Simulation in Submicron Heat Transfer by Murthy
  41. 10.1063/1.354111 / J. Appl. Phys. / Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films by Joshi
  42. Ni, C. , 2009, “Phonon Transport Models for Heat Conduction in Sub-micron Geometries with Application to Microelectronics,” Ph.D. thesis, Purdue University, West Lafayette, IN.
  43. 10.1103/PhysRevB.69.094303 / Phys. Rev. B / “Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation,” by McGaughey
  44. 10.1063/1.2133890 / Appl. Phys. Lett. / “Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion,” by Reddy
  45. 10.1103/PhysRevB.56.8542 / Phys. Rev. B / “Environment Dependent Interatomic Potential for Bulk Silicon,” by Bazant
  46. {'volume-title': 'Electronic Structure and the Properties of Solids', 'author': 'Harrison', 'key': '2019100516390070300_c46'} / Electronic Structure and the Properties of Solids by Harrison
  47. {'first-page': 'p.', 'volume-title': 'Solid State Physics', 'author': 'Klemens', 'key': '2019100516390070300_c47'} / Solid State Physics by Klemens
  48. 10.1103/PhysRev.134.A1058 / Phys. Rev. / Thermal Conductivity of Silicon and Germanium From 3 K to the Melting Point by Glassbrenner
  49. 10.1166/jctn.2008.2454 / J. Comput. Theor. Nanosci. / Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics by Henry
  50. 10.1103/PhysRevB.79.224305 / Phys. Rev. B / “Assessing the Applicability of Quantum Corrections to Classical Thermal Conductivity Predictions,” by Turney
  51. 10.1063/1.3195080 / J. Appl. Phys. / “Thermal Conductivity and Phonon Transport Properties of Silicon Using Perturbation Theory and the Environment-Dependent Interatomic Potential,” by Pascual-Gutiérrez
  52. 10.1115/1.1518495 / ASME J. Heat Transfer / “Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method,” by Murthy
  53. 10.1146/annurev.fl.18.010186.002005 / Annu. Rev. Fluid Mech. / Characteristic-Based Schemes for the Euler Equations by Roe
  54. 10.1063/1.1758301 / Appl. Phys. Lett. / Role of Electron–Phonon Coupling in Thermal Conductance of Metal–Nonmetal Interfaces by Majumdar
  55. 10.1115/1.2241839 / J. Heat Transfer / Nanoscale Heat Conduction Across Metal-Dielectric Interfaces by Sungtaek Ju
Dates
Type When
Created 13 years, 10 months ago (Oct. 5, 2011, 6:30 p.m.)
Deposited 5 years, 10 months ago (Oct. 5, 2019, 4:39 p.m.)
Indexed 1 week, 3 days ago (Aug. 23, 2025, 9:40 p.m.)
Issued 13 years, 10 months ago (Oct. 5, 2011)
Published 13 years, 10 months ago (Oct. 5, 2011)
Published Online 13 years, 10 months ago (Oct. 5, 2011)
Published Print 13 years, 9 months ago (Dec. 1, 2011)
Funders 0

None

@article{Singh_2011, title={Effect of Phonon Dispersion on Thermal Conduction Across Si/Ge Interfaces}, volume={133}, ISSN={1528-8943}, url={http://dx.doi.org/10.1115/1.4004429}, DOI={10.1115/1.4004429}, number={12}, journal={Journal of Heat Transfer}, publisher={ASME International}, author={Singh, Dhruv and Murthy, Jayathi Y. and Fisher, Timothy S.}, year={2011}, month=oct }