Crossref journal-article
ASME International
Journal of Heat Transfer (33)
Abstract

We have batch-fabricated a microdevice consisting of two adjacent symmetric silicon nitride membranes suspended by long silicon nitride beams for measuring thermophysical properties of one-dimensional nanostructures (nanotubes, nanowires, and nanobelts) bridging the two membranes. A platinum resistance heater/thermometer is fabricated on each membrane. One membrane can be Joule heated to cause heat conduction through the sample to the other membrane. Thermal conductance, electrical conductance, and Seebeck coefficient can be measured using this microdevice in the temperature range of 4–400 K of an evacuated Helium cryostat. Measurement sensitivity, errors, and uncertainty are discussed. Measurement results of a 148 nm and a 10 nm-diameter single wall carbon nanotube bundle are presented.

Bibliography

Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., Kim, P., & Majumdar, A. (2003). Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. Journal of Heat Transfer, 125(5), 881–888.

Authors 8
  1. Li Shi (first)
  2. Deyu Li (additional)
  3. Choongho Yu (additional)
  4. Wanyoung Jang (additional)
  5. Dohyung Kim (additional)
  6. Zhen Yao (additional)
  7. Philip Kim (additional)
  8. Arunava Majumdar (additional)
References 26 Referenced 640
  1. Volz, S. G., and Chen, G., 1999, “Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires,” Appl. Phys. Lett., 75, pp. 2056–2058. (10.1063/1.124914)
  2. Khitun, A., Balandin, A., and Wang, K. L., 1999, “Modification of the Thermal Conductivity in Silicon Quantum Wires Due to Spatial Confinement of Acoustic Phonons,” Superlattices Microstruct., 26, pp. 181–193. (10.1006/spmi.1999.0772)
  3. Dresselhaus, M. S., and Eklund, P. C., 2000, “Phonons in Carbon Nanotubes,” Adv. Phys., 49(6), pp. 705–814. (10.1080/000187300413184)
  4. Schwab, K., Henriksen, E. A., Worlock, J. M., and Roukes, M. L., 2000, “Measurement of the Quantum of Thermal Conductance,” Nature (London), 404, pp. 974–976. (10.1038/35010065)
  5. Hone, J., Ellwood, I., Muno, M., Mizel, A., Cohen, M. L., Zettl, A., Rinzler, A. G., and Smalley, R. E., 1998, “Thermoelectric Power of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett., 80, pp. 1042–1045. (10.1103/PhysRevLett.80.1042)
  6. Yi, W., Lu, L., Zhang, D. L., Pan, Z. W., and Xie, S. S., 1999, “Linear Specific Heat of Carbon Nanotubes,” Phys. Rev. B, 59, pp. 9015–9018. (10.1103/PhysRevB.59.R9015)
  7. Mizel, A., Benedict, L. X., Cohen, M. L., Louie, S. G., Zettl, A., Budraa, N. K., and Beyermann, W. P., 1999, “Analysis of the Low-Temperature Specific Heat of Multiwalled Carbon Nanotubes and Carbon Nanotube Ropes,” Phys. Rev. B, 60, pp. 3264–3270. (10.1103/PhysRevB.60.3264)
  8. Hone, J., Whitney, M., Piskoti, C. Whitney, M., and Zettl, A., 1999, “Thermal Conductivity of Single-Walled Carbon Nanotubes,” Phys. Rev. B, 59, pp. 2514–2516. (10.1103/PhysRevB.59.R2514)
  9. Hone, J., Llaguno, M. C., Nemes, N. M., Johnson, A. T., Fischer, J. E., Walters, D. A., Casavant, M. J., Schmidt, J., and Smalley, R. E., 2000, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films,” Appl. Phys. Lett., 77, pp. 666–668. (10.1063/1.127079)
  10. Berber, S., Kwon, Y.-K., and Tomanek, D., 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Phys. Rev. Lett., 84, pp. 4613–4616. (10.1103/PhysRevLett.84.4613)
  11. Che, J., Cagin, T., and Goddard, W. A., 2000, “Thermal Conductivity of Carbon Nanotubes,” Nanotechnology, 11, pp. 65–69. (10.1088/0957-4484/11/2/305)
  12. Osman, M., and Srivastava, D., 2001, “Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes,” Nanotechnology, 12, pp. 21–24.
  13. Lin, Y.-M., Sun, X., and Dresselhaus, M. S., 2000, “Theoretical Investigation of Thermoelectric Transport Properties of Cylindrical Bi Nanowires,” Phys. Rev. B, 62, pp. 4610–4623. (10.1103/PhysRevB.62.4610)
  14. Heremans, J. P., Thrush, C. M., Morelli, D. T., and Wu, M.-C., 2002, “Thermoelectric Power of Bismuth Nanocomposites,” Phys. Rev. Lett., 88, p. 216801216801. (10.1103/PhysRevLett.88.216801)
  15. Cahill, D. G. , 1990, “Thermal Conductivity Measurement From 30–750 K: The 3ω Method,” Rev. Sci. Instrum., 61, pp. 802–808. (10.1063/1.1141498)
  16. Shi, L., 2001, “Mesoscopic Thermophysical Measurements of Microstructures and Carbon Nanotubes,” Ph.D. dissertation, University of California, Berkeley.
  17. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L., 2001, “Thermal Transport Measurements of Individual Multiwalled Carbon Nanotubes,” Phys. Rev. Lett., 87, p. 215502215502. (10.1103/PhysRevLett.87.215502)
  18. De Vecchio, D., Taborek, P., and Rutledge, J. E., 1995, “Matching the Resistivity of Si:Nb Thin Film Thermometers to the Experimental Temperature Range,” Rev. Sci. Instrum., 66, pp. 5367–5368. (10.1063/1.1146114)
  19. Li, D., Wu, Y., Kim, P., Shi, L., Mingo, N., Liu, Y., Yang, P., and Majumdar, A., 2003, “Thermal Conductivity of Individual Silicon Nanowires,”submitted. (10.1063/1.1616981)
  20. Li, D., Prieto, A. L., Wu, Y., Martin-Gonzalez, M. S., Stacy, A., Sands, T., Gronsky, R., Yang, P., and Majumdar, A., 2002, “Measurement of Bi2Te3 Nanowire Thermal Conductivity and Seebeck Coefficient,” Proc. 21st International Conference on Thermoelectrics, IEEE, pp. 333–336.
  21. Shi, L., Hao, Q., Yu, C., Kim, D., Farooqi, R., Mingo, N., Kong, X., and Wang, Z. L., 2003, “Thermal Conductivity of SnO2 Nanobelts,” in preparation.
  22. Bockrath, M., Cobden, D. H., Lu, J., Rinzler, A. G., Smalley, R. E., Balents, L., and McEuen, P. L., 1999, “Luttinger-Liquid Behavior in Carbon Nanotubes,” Nature (London), 397, pp. 598–601. (10.1038/17569)
  23. Yao, Z., Postma, H. W. Ch., Balents, L., and Dekker, C., 1999, “Carbon Nanotube Intramolecular Junctions,” Nature (London), 402, pp. 273–280. (10.1038/46241)
  24. Collins, P. G., Bradley, K., Ishigami, M., and Zettl, A., 2000, “Extreme Oxygen Sensitivity of Electrical Properties of Carbon Nanotubes,” Science, 287, pp. 1801–1804. (10.1126/science.287.5459.1801)
  25. Bradley, K., Jhi, S.-H., Collins, P. G., Hone, J., Cohen, M. L., Louie, S. G., and Zettl, A., 2000 “Is the Intrinsic Thermoelectric Power of Carbon Nanotubes Positive?” Phys. Rev. Lett., 85, pp. 4361–4364. (10.1103/PhysRevLett.85.4361)
  26. Rowe, D. M., 1995, CRC Handbook of Thermoelectrics, CRC Press, New York. (10.1201/9781420049718)
Dates
Type When
Created 21 years, 10 months ago (Sept. 25, 2003, 6:45 p.m.)
Deposited 5 years, 10 months ago (Oct. 5, 2019, 11:30 p.m.)
Indexed 1 day, 10 hours ago (Aug. 23, 2025, 9:42 p.m.)
Issued 21 years, 11 months ago (Sept. 23, 2003)
Published 21 years, 11 months ago (Sept. 23, 2003)
Published Online 21 years, 11 months ago (Sept. 23, 2003)
Published Print 21 years, 10 months ago (Oct. 1, 2003)
Funders 0

None

@article{Shi_2003, title={Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device}, volume={125}, ISSN={1528-8943}, url={http://dx.doi.org/10.1115/1.1597619}, DOI={10.1115/1.1597619}, number={5}, journal={Journal of Heat Transfer}, publisher={ASME International}, author={Shi, Li and Li, Deyu and Yu, Choongho and Jang, Wanyoung and Kim, Dohyung and Yao, Zhen and Kim, Philip and Majumdar, Arunava}, year={2003}, month=sep, pages={881–888} }