Crossref journal-article
ASME International
Journal of Heat Transfer (33)
Abstract

The Boltzmann Transport Equation (BTE) for phonons best describes the heat flow in solid nonmetallic thin films. The BTE, in its most general form, however, is difficult to solve analytically or even numerically using deterministic approaches. Past research has enabled its solution by neglecting important effects such as dispersion and interactions between the longitudinal and transverse polarizations of phonon propagation. In this article, a comprehensive Monte Carlo solution technique of the BTE is presented. The method accounts for dual polarizations of phonon propagation, and non-linear dispersion relationships. Scattering by various mechanisms is treated individually. Transition between the two polarization branches, and creation and destruction of phonons due to scattering is taken into account. The code has been verified and evaluated by close examination of its ability or failure to capture various regimes of phonon transport ranging from diffusive to the ballistic limit. Validation results show close agreement with experimental data for silicon thin films with and without doping. Simulation results show that above 100 K, transverse acoustic phonons are the primary carriers of energy in silicon.

Bibliography

Mazumder, S., & Majumdar, A. (2001). Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization. Journal of Heat Transfer, 123(4), 749–759.

Authors 2
  1. Sandip Mazumder (first)
  2. Arunava Majumdar (additional)
References 30 Referenced 370
  1. Ziman, J. M., 1960, Electrons and Phonons, Oxford University Press, London.
  2. Kittel, C., 1986, Introduction to Solid State Physics, John Wiley & Sons Inc., Sixth Edition.
  3. Tien, C. L., Majumdar, A., and Gerner, F. M., eds., 1998, Microscale Energy Transport, Taylor and Francis.
  4. Ju, Y. S., and Goodson, K. E., 1999, “Phonon Scattering in Silicon Films with Thickness of Order 100 nm,” Appl. Phys. Lett., 74, No. 20, pp. 3005–3007. (10.1063/1.123994)
  5. Klemens, P. G., 1958, “Thermal Conductivity and Lattice Vibrational Modes,” in Solid State Physics, 7, F. Seitz and D. Turnball, eds., Academic Press, NY. (10.1016/S0081-1947(08)60551-2)
  6. Callaway, J. , 1959, “Model for Lattice Thermal Conductivity at Low Temperatures,” Phys. Rev., 113, No. 4, pp. 1046–1051. (10.1103/PhysRev.113.1046)
  7. Holland, M. G. , 1963, “Analysis of Lattice Thermal Conductivity,” Phys. Rev., 132, No. 6, pp. 2461–2471. (10.1103/PhysRev.132.2461)
  8. Holland, M. G. , 1964, “Phonon Scattering in Semiconductors from Thermal Conductivity Studies,” Phys. Rev., 134, No. 2A, pp. A471–A480A471–A480. (10.1103/PhysRev.134.A471)
  9. Bhandari, C. M., and Verma, G. S., 1965, “Role of Longitudinal and Transverse Phonons in Lattice Thermal Conductivity of GaAs and InSb,” Phys. Rev., 140, No. 6A, pp. A210–A214A210–A214. (10.1103/PhysRev.140.A2101)
  10. Guyer, R. A., and Krumhansl, J. A., 1966, “Solution of the Linearized Phonon Boltzmann Equation,” Phys. Rev., 148, No. 2, pp. 766–778. (10.1103/PhysRev.148.766)
  11. Hardy, R. J. , 1970, “Phonon Boltzmann Equation and Second Sound in Solids,” Phys. Rev. B, 2, No. 4, pp. 1193–1206. (10.1103/PhysRevB.2.1193)
  12. Moglestue, C. , 1982, “Monte Carlo Particle Modeling of Small Semiconductor Devices,” Comput. Methods Appl. Mech. Eng., 30, pp. 173–208. (10.1016/0045-7825(82)90003-2)
  13. Jacoboni, C., and Reggiani, L., 1983, “The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials,” Rev. Mod. Phys., 55, No. 3, pp. 642–705. (10.1103/RevModPhys.55.645)
  14. Lugli, P., Bordone, P., Reggiani, L., Reiger, M., Kocevar, P., and Goodnick, S. M., 1989, “Monte Carlo Studies of Nonequilibrium Phonon Effects in Polar Semiconductors and Quantum Wells. I. Laser Photoexcitation,” Phys. Rev. B, 39, No. 11, pp. 7852–7865. (10.1103/PhysRevB.39.7852)
  15. Fischetti, M. V., and Laux, S. E., 1988, “Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects,” Phys. Rev. B, 38, No. 14, pp. 9721–9745. (10.1103/PhysRevB.38.9721)
  16. Fischetti, M. V., and Laux, S. E., 1993, “Monte Carlo Study of Electron Transport in Silicon Inversion Layers,” Phys. Rev. B, 48, No. 4, pp. 2244–2274. (10.1103/PhysRevB.48.2244)
  17. Majumdar, A. , 1993, “Microscale Heat Conduction in Dielectric Thin Films,” ASME J. Heat Transfer, 115, No. 7, pp. 7–16. (10.1115/1.2910673)
  18. Chen, G., and Tien, C. L., 1993, “Thermal Conductivities of Quantum Well Structures,” J. Thermophys. Heat Transfer, 7, No. 2, pp. 311–318. (10.2514/3.421)
  19. Goodson, K. E. , 1996, “Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures,” ASME J. Heat Transfer, 118, pp. 279–286. (10.1115/1.2825842)
  20. Chen, G. , 1998, “Thermal Conductivity and Ballistic Phonon Transport in the Cross-Plane Direction of Superlattices,” Phys. Rev. B, 57, No. 23, pp. 14958–14973. (10.1103/PhysRevB.57.14958)
  21. Klistner, T., VanCleve, J. E., Henry, E. F., and Pohl, R. O., 1988, “Phonon Radiative Heat Transfer and Surface Scattering,” Phys. Rev. B, 38, No. 11, pp. 7576–7594. (10.1103/PhysRevB.38.7576)
  22. Peterson, R. B. , 1994, “Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal,” ASME J. Heat Transfer, 116, pp. 815–822. (10.1115/1.2911452)
  23. Mavriplis, D. J., 1995, “Unstructured Mesh Generation and Adaptivity,” Institute for Computer Applications in Science and Engineering, Technical Report #TR-95-26.
  24. Cahill, D. G. , 1997, “Heat Transport in Dielectric Thin Films and at Solid-Solid Interfaces,” Microscale Thermophys. Eng., 1, pp. 85–109. (10.1080/108939597200296)
  25. Sverdrup, P. G., Ju, Y. S., and Goodson, K. E., 1999, “Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors,” IMECE 1999, Nashville, TN, HTD 363–3. (10.1115/IMECE1999-1061)
  26. Vincenti, W. G., and Kruger, C. H., 1977, Introduction to Physical Gas Dynamics, Robert Kreiger Publ., New York, NY.
  27. Waugh, J. L., and Dolling, G., 1963, “Crystal Dynamics of Gallium Arsenide,” Phys. Rev., 132, pp. 2410–2412. (10.1103/PhysRev.132.2410)
  28. Asheghi, M., 2000, “Thermal Transport Properties of Silicon Films,” Thesis in Mechanical Engineering, Stanford University.
  29. Brockhouse, B. N. , 1959, “Lattice Vibrations in Silicon and Germanium,” Phys. Rev. Lett., 2, pp. 256256. (10.1103/PhysRevLett.2.256)
  30. Klemens, P. G. , 1981, “Theory of Lattice Thermal Conductivity: Role of Low-Frequency Phonons,” Int. J. Thermophys., 2, No. 1, pp. 55–62. (10.1007/BF00503574)
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:02 a.m.)
Deposited 2 years, 4 months ago (April 23, 2023, 6:29 a.m.)
Indexed 26 minutes ago (Sept. 2, 2025, 8:38 p.m.)
Issued 24 years, 7 months ago (Jan. 20, 2001)
Published 24 years, 7 months ago (Jan. 20, 2001)
Published Online 24 years, 7 months ago (Jan. 20, 2001)
Published Print 24 years, 1 month ago (Aug. 1, 2001)
Funders 0

None

@article{Mazumder_2001, title={Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization}, volume={123}, ISSN={1528-8943}, url={http://dx.doi.org/10.1115/1.1377018}, DOI={10.1115/1.1377018}, number={4}, journal={Journal of Heat Transfer}, publisher={ASME International}, author={Mazumder, Sandip and Majumdar, Arunava}, year={2001}, month=jan, pages={749–759} }