Crossref journal-article
Wiley
Journal of Microscopy (311)
Abstract

SummaryThe desire to study macromolecular complexes within their cellular context requires the ability to produce thin samples suitable for cryo‐TEM (cryo‐transmission electron microscope) investigations. In this paper, we discuss two similar approaches, which were developed independently in Utrecht (the Netherlands) and Albany (USA). The methods are particularly suitable for both tissue samples and cell suspensions prepared by a high‐pressure freezer (HPF). The workflows are explained with particular attention to potential pitfalls, while underlying principles are highlighted (‘why to do so’). Although both workflows function with a high success rate, full execution requires considerable experience and remains demanding. In addition, throughput is low. We hope to encourage other research groups worldwide to take on the challenge of improving the HPF– cryo‐FIB‐SEM – cryo‐TEM workflow. We discuss a number of suggestions to this end.Lay DescriptionLife is ultimately dictated by the interaction of molecules in our bodies. Highly complex equipment is being used and further developed to study these interactions. The present paper describes methods to prepare small, very thin lamellae (area of 5×5 µm2, thickness 50–300 nm) of a cell to be studied in a cryo‐transmission electron microscope (cryo‐TEM). Special care must be taken to preserve the natural state of molecules in their natural environment. In the case of cryo‐TEM, the samples must be frozen and kept frozen to be compatible with the vacuum conditions in the microscope. The frozen condition imposes technical challenges which are addressed. Two approaches to obtain the thin lamellae are described. Both make use of a focused ion beam (FIB) microscope. The FIB allows removal of material with nanometre precision by focusing a beam of ionised atoms (gallium ions) onto the sample. Careful control of the FIB allows cutting out of the required thin lamellae. In both strategies, the thin lamellae remain attached to the original sample, and the ensemble of sample with section and sample holder is transported from the FIB microscope to the TEM while being kept frozen.

Bibliography

DE WINTER, D. A. M., HSIEH, C., MARKO, M., & HAYLES, M. F. (2020). Cryo‐FIB preparation of whole cells and tissue for cryo‐TEM: use of high‐pressure frozen specimens in tubes and planchets. Journal of Microscopy, 281(2), 125–137. Portico.

Authors 4
  1. D.A.M. DE WINTER (first)
  2. C. HSIEH (additional)
  3. M. MARKO (additional)
  4. M. F. HAYLES (additional)
References 52 Referenced 20
  1. 10.1016/j.jsb.2008.07.003
  2. 10.1016/j.bpj.2015.10.053
  3. 10.1016/j.micron.2010.10.009
  4. 10.1016/j.jmb.2015.09.030
  5. {'volume-title': 'The Transmission Electron Microscope', 'year': '2012', 'author': 'Carlson D.B.', 'key': 'e_1_2_7_6_1'} / The Transmission Electron Microscope by Carlson D.B. (2012)
  6. 10.1016/j.jsb.2013.05.016
  7. 10.1038/nmeth.3700
  8. 10.1017/S0033583500004297
  9. 10.1111/j.1365-2818.2009.03152.x
  10. 10.1116/1.2902962
  11. 10.7554/eLife.45919
  12. 10.1111/jmi.12951
  13. 10.1016/j.jsb.2010.07.004
  14. 10.1111/j.1365-2818.2007.01775.x
  15. 10.1016/j.jsb.2005.10.004
  16. 10.1016/j.jsb.2013.10.019
  17. 10.1016/j.matbio.2014.08.010
  18. 10.1016/j.jsb.2013.10.018
  19. 10.1107/S090904951100820X
  20. 10.1111/j.1365-2818.1992.tb03260.x
  21. 10.1111/jmi.12939
  22. 10.1017/S143192761801601X
  23. 10.1016/j.jsb.2015.07.012
  24. 10.1111/j.1365-2818.2006.01567.x
  25. 10.1038/nmeth1014
  26. 10.1557/mrs2007.63
  27. 10.1016/S0091-679X(06)79002-1
  28. 10.1073/pnas.0905481107
  29. 10.5603/FHC.2014.0001
  30. 10.1016/S0091-679X(10)96020-2
  31. 10.1002/jemt.22630
  32. 10.1111/jmi.12953
  33. 10.1016/j.jsb.2010.02.011
  34. 10.1073/pnas.1201333109
  35. 10.1016/B978-0-12-416026-2.00014-5
  36. 10.1016/j.jsb.2012.08.012
  37. 10.1016/j.jsb.2016.07.010
  38. 10.1038/s41592-019-0497-5
  39. Schampers R.J.P.G. Hayes M.F. deWinter D.A.M.&Schneijdenberg C.T.W.M.(2014)Forming an electron microscope sample from high‐pressure frozen material. Patent US 8674323 B2.
  40. 10.1016/j.jsb.2013.09.024
  41. 10.1088/0022-3727/40/3/028
  42. 10.1111/j.1365-2818.2012.03635.x
  43. 10.1007/s00418-008-0500-1
  44. 10.1111/j.1365-2818.1995.tb03648.x
  45. 10.1088/1742-6596/644/1/012014
  46. 10.4081/ejtm.2015.4823
  47. 10.1002/1873-3468.12757
  48. 10.1111/j.1365-2818.2010.03471.x
  49. 10.1016/0309-1651(82)90007-8
  50. 10.1016/j.jsb.2006.12.003
  51. 10.1016/j.jsb.2016.02.013
  52. 10.1111/jmi.12071
Dates
Type When
Created 5 years, 1 month ago (July 21, 2020, 5:25 a.m.)
Deposited 1 year, 11 months ago (Sept. 3, 2023, 9:30 a.m.)
Indexed 3 days, 21 hours ago (Aug. 20, 2025, 8:58 a.m.)
Issued 5 years ago (July 28, 2020)
Published 5 years ago (July 28, 2020)
Published Online 5 years ago (July 28, 2020)
Published Print 4 years, 6 months ago (Feb. 1, 2021)
Funders 0

None

@article{DE_WINTER_2020, title={Cryo‐FIB preparation of whole cells and tissue for cryo‐TEM: use of high‐pressure frozen specimens in tubes and planchets}, volume={281}, ISSN={1365-2818}, url={http://dx.doi.org/10.1111/jmi.12943}, DOI={10.1111/jmi.12943}, number={2}, journal={Journal of Microscopy}, publisher={Wiley}, author={DE WINTER, D.A.M. and HSIEH, C. and MARKO, M. and HAYLES, M. F.}, year={2020}, month=jul, pages={125–137} }