Abstract
Nuclear‐encoded proteins destined for insertion into the mitochondrial outer membrane, follow the same general pathway for import as proteins that are translocated to interior compartments within the organelle. This observation is true both for β‐barrel‐type proteins and for proteins that contain hydrophobic α‐helical transmembrane segments. In this review, we describe what is known about the various steps leading to protein insertion into the outer membrane, and discuss the energetics that favor vectorial translocation into and across this membrane. The selection of the outer membrane during import may involve a lateral release of the translocating polypeptide from the import machinery so that the appropriate domains of the protein become embedded in the lipid bilayer. One type of topogenic domain that can guarantee such selection of the outer membrane is a signal‐anchor sequence of the type characterized for the bitopic protein Mas70p. It is suggested that a signal‐anchor sequence selective for the mitochondrial outer membrane causes abrogation of polypeptide translocation and triggers the release of the transmembrane segment into the surrounding lipid bilayer, prior to any possibility for the commitment of translocation to the interior of the organelle. Specific structural features of the signal‐anchor sequence specify its orientation in the membrane, and can confer on this sequence the ability to form homo‐oligomers and hetero‐oligomers. Strategies other than a signal‐anchor sequence may be employed by other classes of proteins for selection of the outer‐membrane. Of note is the ability of the outer‐membrane import machinery to catalyze integration of the correct set of proteins into the outer‐membrane bilayer, while allowing proteins that are destined for integration into the bilayer of the inner membrane to pass through unimpeded. Again, however, different proteins may employ different strategies. One model proposes that this can be accomplished by a combination of a matrix‐targeting signal and a distal stop‐transfer sequence. In this model, the formation of contact sites, which is triggered when the matrix‐targeting signal engages the import machinery of the inner membrane, may prevent the outer‐membrane translocon from recognizing and responding to the downstream stop‐transfer domain. This allows the transmembrane segment to pass across the outer‐membrane, and subsequently integrate into the inner membrane.
References
116
Referenced
85
10.1128/MCB.6.2.626
10.1073/pnas.80.23.7249
10.1016/S0021-9258(18)42580-X
10.1016/S0021-9258(18)32263-4
/ J. Biol. Chem. by Argan C. (1983)10.1146/annurev.cb.04.110188.001445
10.1073/pnas.84.16.5783
10.1002/j.1460-2075.1993.tb05884.x
10.1073/pnas.77.3.1496
10.1016/0092-8674(90)90378-R
10.1016/S0092-8674(05)80063-7
10.1016/0092-8674(87)90541-1
10.1016/S0021-9258(18)47769-1
10.1038/332805a0
10.1016/0092-8674(93)90640-C
10.1016/S0021-9258(17)36953-3
10.1016/S0021-9258(18)53844-8
10.1016/S0079-6603(08)61018-1
10.1038/349806a0
/ Nature by Deshaies R. J. (1988){'key': 'e_1_2_3_20_1', 'first-page': '219', 'volume': '17', 'author': 'Driessen A. J. M.', 'year': '1992', 'journal-title': 'EMBO J.'}
/ EMBO J. by Driessen A. J. M. (1992)10.1038/322228a0
10.1002/j.1460-2075.1987.tb04860.x
10.1002/j.1460-2075.1988.tb02923.x
10.1016/S0021-9258(18)50393-8
10.1016/S0021-9258(18)67482-4
/ J. Biol. Chem. by Epand R. M. (1986)10.1016/S0021-9258(17)37391-X
/ J. Biol. Chem. by Gaikwad A. S. (1994)10.1038/355033a0
10.1128/MCB.10.5.1873
10.1146/annurev.ge.25.120191.000321
10.1016/0962-8924(91)90037-A
10.1016/0092-8674(92)90292-K
10.1002/j.1460-2075.1993.tb05802.x
10.1016/0955-0674(93)90142-D
10.1083/jcb.124.5.637
10.1016/0304-4157(89)90002-6
10.1126/science.2406905
10.1073/pnas.86.15.5786
10.1002/j.1460-2075.1984.tb02274.x
10.1146/annurev.bi.62.070193.002025
/ Annu. Rev. Biochem. by Hendrick J. P. (1993)10.1002/j.1460-2075.1990.tb07517.x
10.1002/j.1460-2075.1985.tb04110.x
10.1073/pnas.86.21.8432
10.1016/S0021-9258(18)54823-7
10.1016/S0021-9258(17)36960-0
10.1016/S0021-9258(18)33392-1
10.1016/S0021-9258(19)36493-2
/ J. Biol. Chem. by Keil P. (1993)10.1007/BF00211091
10.1016/0092-8674(92)90086-R
10.1182/blood.V80.4.879.879
10.1016/0005-2736(92)90001-3
10.1126/science.1615327
10.1016/0014-5793(93)80649-F
10.1016/S0021-9258(17)36609-7
10.1083/jcb.107.2.503
10.1016/S0021-9258(19)40186-5
/ J. Biol. Chem. by Liu X. (1990)10.1111/j.1432-1033.1990.tb19260.x
10.1083/jcb.121.6.1233
10.1083/jcb.119.6.1451
/ J. Cell Biol. by McBride H. M. (1992)10.1016/S0021-9258(17)46635-X
10.1016/S0021-9258(17)32705-9
/ J. Biol. Chem. by Millar D. G. (1994)10.1083/jcb.121.5.1021
10.1016/S0021-9258(17)37074-6
10.1016/S0021-9258(18)42177-1
10.1093/oxfordjournals.jbchem.a122698
/ J. Biochem. (Tokyo) by Nakai M. (1989)10.1016/0092-8674(90)90437-J
10.1098/rstb.1993.0034
10.1016/S0021-9258(18)61288-8
/ J. Biol. Chem. by Nguyen M. (1987)10.1083/jcb.106.5.1499
10.1016/S0021-9258(19)74386-5
10.1016/S0021-9258(19)89417-6
10.1016/0092-8674(93)90509-O
10.1016/0092-8674(92)90268-H
10.1016/0092-8674(91)90507-U
{'key': 'e_1_2_3_74_1', 'first-page': '287', 'volume-title': 'Stress proteins in biology and medicine', 'author': 'Pelham H. R. B.', 'year': '1990'}
/ Stress proteins in biology and medicine by Pelham H. R. B. (1990)10.1016/S0021-9258(18)47598-9
10.1016/0092-8674(87)90619-2
10.1016/S0021-9258(18)68887-8
10.1016/0092-8674(92)90069-O
10.1002/j.1460-2075.1993.tb06095.x
10.1016/0014-5793(90)81469-5
10.1083/jcb.124.1.1
10.1002/j.1460-2075.1986.tb04363.x
10.1016/0092-8674(89)90005-6
10.1002/j.1460-2075.1987.tb02377.x
10.1002/pro.5560020202
10.1016/0092-8674(85)90039-X
10.1016/S0021-9258(17)32657-1
10.1126/science.1661031
10.1083/jcb.105.1.235
10.1073/pnas.85.20.7592
10.1016/S0021-9258(19)38558-8
10.1016/S0167-7306(08)60097-6
10.1016/0092-8674(91)90455-8
10.1016/0092-8674(92)90231-Z
10.1073/pnas.89.9.3770
10.1016/0968-0004(90)90230-9
10.1146/annurev.cb.06.110190.001335
10.1016/S0021-9258(19)77822-3
10.1016/S0021-9258(19)38869-6
/ J. Biol. Chem. by Skerjanc I. S. (1990)10.1002/j.1460-2075.1987.tb02621.x
- Smith M. Hick S. Baker K.&McCauley R.(1994)J. Biol. Chem.in the press.
10.1111/j.1399-3054.1993.tb01752.x
10.1016/0092-8674(89)90762-9
10.1016/0092-8674(90)90244-9
10.1038/355084a0
10.1083/jcb.111.6.2353
10.1016/0968-0004(94)90041-8
10.1002/jemt.1070270404
10.1016/0092-8674(86)90846-9
10.1016/0968-0004(93)90090-A
10.1002/j.1460-2075.1988.tb02924.x
10.1016/0304-4157(88)90013-5
10.1111/j.1432-1033.1988.tb14150.x
10.1091/mbc.5.4.465
10.1126/science.4048938
10.1016/S0021-9258(18)63734-2
/ J. Biol. Chem. by Zhuang Z. (1989)10.1016/S0021-9258(18)48535-3
Dates
Type | When |
---|---|
Created | 20 years, 5 months ago (March 4, 2005, 6:41 a.m.) |
Deposited | 1 year, 11 months ago (Aug. 31, 2023, 12:49 a.m.) |
Indexed | 1 month, 4 weeks ago (June 27, 2025, 6:35 a.m.) |
Issued | 30 years, 7 months ago (Jan. 1, 1995) |
Published | 30 years, 7 months ago (Jan. 1, 1995) |
Published Online | 20 years, 5 months ago (March 3, 2005) |
Published Print | 30 years, 7 months ago (Jan. 1, 1995) |
@article{Shore_1995, title={Import and Insertion of Proteins into the Mitochondrial Outer Membrane}, volume={227}, ISSN={1432-1033}, url={http://dx.doi.org/10.1111/j.1432-1033.1995.tb20354.x}, DOI={10.1111/j.1432-1033.1995.tb20354.x}, number={1–2}, journal={European Journal of Biochemistry}, publisher={Wiley}, author={Shore, Gordon C. and McBride, Heidi M. and Millar, Douglas G. and Steenaart, Nancy A. E. and Nguyen, Mai}, year={1995}, month=jan, pages={9–18} }