Crossref journal-article
Wiley
Molecular Microbiology (311)
Abstract

SummaryPrions are infectious, aggregated proteins that cause diseases in mammals but are not normally toxic in fungi. Excess Sup35p, an essential yeast protein that can exist as the [PSI+] prion, inhibits growth of [PSI+] but not [psi‐] cells. This toxicity is rescued by expressing the Sup35Cp domain of Sup35p, which is sufficient for cell viability but not prion propagation. We now show that rescue requires Sup35Cp levels to be proportional to Sup35p overexpression. Overexpression of Sup35p appeared to cause pre‐existing [PSI+] aggregates to coalesce into larger aggregates, but these were not toxic per se because they formed even when Sup35Cp rescued growth. Overexpression of Sup45p, but not other tested essential Sup35p binding partners, caused rescue. Sup45–GFPp formed puncta that colocalized with large [PSI+] Sup35‐RFPp aggregates in cells overexpressing Sup35p, and the frequency of the Sup45–GFPp puncta was reduced by rescuing levels of Sup35Cp. In contrast, [PSI+] toxicity caused by a high excess of the Sup35p prion domain (Sup35NMp) was rescued by a single copy of Sup35Cp, was not rescued by Sup45p overexpression and was not associated with the appearance of Sup45–GFPp puncta. This suggests [PSI+] toxicity caused by excess Sup35p verses Sup35NMp is, respectively, through sequestration/inactivation of Sup45p verses Sup35p.

Bibliography

Vishveshwara, N., Bradley, M. E., & Liebman, S. W. (2009). Sequestration of essential proteins causes prion associated toxicity in yeast. Molecular Microbiology, 73(6), 1101–1114. Portico.

Authors 3
  1. Namitha Vishveshwara (first)
  2. Michael E. Bradley (additional)
  3. Susan W. Liebman (additional)
References 69 Referenced 65
  1. 10.1016/j.cell.2006.04.035
  2. 10.1038/nature02998
  3. 10.1074/jbc.M410611200
  4. 10.1091/mbc.E08-01-0078
  5. 10.1017/S1355838200000777
  6. 10.1038/375698a0
  7. 10.1111/j.1365-2958.2003.03955.x
  8. 10.1073/pnas.152330699
  9. 10.1385/0-89603-342-2:223
  10. 10.1093/bmb/66.1.109
  11. 10.1038/nature05294
  12. 10.1007/BF00351802
  13. 10.1126/science.7754373
  14. 10.1128/MCB.22.10.3301-3315.2002
  15. 10.1038/hdy.1965.65
  16. 10.1093/genetics/128.3.513 / Genetics / Interaction of the yeast omnipotent suppressors SUP1 (SUP45) and SUP2 (SUP35) with non‐mendelian factors by Dagkesamanskaya A.R. (1991)
  17. 10.1016/S0092-8674(00)81467-1
  18. 10.1093/genetics/144.4.1375
  19. 10.1093/genetics/147.2.507
  20. 10.1073/pnas.95.5.2400
  21. 10.1093/emboj/19.9.1942
  22. 10.1016/S0092-8674(01)00427-5
  23. 10.1073/pnas.0404968101
  24. 10.1073/pnas.0802593105
  25. {'key': 'e_1_2_6_26_1', 'first-page': '334', 'article-title': 'Eukaryotic polypeptide chain release factor eRF3 is an eRF1‐ and ribosome‐dependent guanosine triphosphatase', 'volume': '2', 'author': 'Frolova L.X.', 'year': '1996', 'journal-title': 'RNA'} / RNA / Eukaryotic polypeptide chain release factor eRF3 is an eRF1‐ and ribosome‐dependent guanosine triphosphatase by Frolova L.X. (1996)
  26. 10.1128/MCB.26.2.617-629.2006 / Mol Cell Biol / Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast by Ganusova E.E. (2006)
  27. 10.1093/emboj/20.8.1993
  28. 10.1111/j.1460-9568.2008.06310.x
  29. 10.1126/science.1134641
  30. 10.1038/nrm2101
  31. 10.1016/j.nbd.2006.04.011
  32. 10.1128/MCB.02448-05
  33. 10.1038/nature02391
  34. 10.1038/nature03679
  35. 10.1073/pnas.252652099
  36. 10.1126/science.1056784
  37. 10.1056/NEJM2003ra020003
  38. 10.1371/journal.pbio.0020086
  39. 10.1073/pnas.90.23.10962
  40. 10.1126/science.273.5275.622
  41. 10.1002/j.1460-2075.1996.tb00675.x
  42. 10.1128/MCB.17.5.2798
  43. 10.1126/science.6801762
  44. 10.1002/jnr.20025
  45. 10.1016/S0092-8674(00)81163-0
  46. 10.1038/nm1066
  47. 10.1038/ncb1105-1039
  48. 10.1128/MCB.24.17.7769-7778.2004
  49. 10.1128/MCB.22.13.4723-4738.2002
  50. 10.1038/nature03981
  51. 10.1371/journal.pbio.0050024
  52. 10.1128/MCB.21.20.7035-7046.2001 / Mol Cel Biol / Induction of distinct [URE3] yeast prion strains by Schlumpberger M. (2001)
  53. {'key': 'e_1_2_6_54_1', 'volume-title': 'Methods in Yeast Genetics.', 'author': 'Sherman F.', 'year': '1986'} / Methods in Yeast Genetics. by Sherman F. (1986)
  54. 10.1093/genetics/122.1.19
  55. 10.1016/S1097-2765(00)80412-8
  56. 10.1016/S0092-8674(00)80667-4
  57. 10.1002/j.1460-2075.1995.tb00111.x
  58. 10.1038/nature02392
  59. 10.1371/journal.pgen.1000382
  60. 10.1126/science.1067122
  61. 10.1111/j.1365-2958.1993.tb01159.x
  62. 10.1093/genetics/137.3.671
  63. 10.1038/nature06108
  64. 10.1093/emboj/20.22.6236
  65. 10.1111/j.1365-2958.2004.04157.x
  66. 10.1126/science.7909170
  67. {'key': 'e_1_2_6_68_1', 'first-page': '305', 'volume-title': 'Prion Biology and Diseases.', 'author': 'Wickner R.B.', 'year': '2004'} / Prion Biology and Diseases. by Wickner R.B. (2004)
  68. 10.1093/emboj/18.5.1182
  69. 10.1046/j.1365-2958.2001.02224.x
Dates
Type When
Created 16 years ago (Aug. 11, 2009, 1:46 p.m.)
Deposited 1 year, 11 months ago (Sept. 28, 2023, 10:12 p.m.)
Indexed 4 months, 4 weeks ago (April 9, 2025, 7:24 p.m.)
Issued 16 years ago (Sept. 1, 2009)
Published 16 years ago (Sept. 1, 2009)
Published Online 15 years, 11 months ago (Sept. 14, 2009)
Published Print 16 years ago (Sept. 1, 2009)
Funders 0

None

@article{Vishveshwara_2009, title={Sequestration of essential proteins causes prion associated toxicity in yeast}, volume={73}, ISSN={1365-2958}, url={http://dx.doi.org/10.1111/j.1365-2958.2009.06836.x}, DOI={10.1111/j.1365-2958.2009.06836.x}, number={6}, journal={Molecular Microbiology}, publisher={Wiley}, author={Vishveshwara, Namitha and Bradley, Michael E. and Liebman, Susan W.}, year={2009}, month=sep, pages={1101–1114} }