Crossref journal-article
Wiley
Molecular Microbiology (311)
Abstract

SummaryIn recent years it has become clear that the production of N‐acyl homoserine lactones (N‐AHLs) is widespread in Gram‐negative bacteria. These molecules act as diffusible chemical communication signals (bacterial pheromones) which regulate diverse physiological processes including bioluminescence, antibiotic production, piasmid conjugal transfer and synthesis of exoenzyme virulence factors in plant and animal pathogens. The paradigm for N‐AHL production is in the bioluminescence (lux) phenotype of Photobacterium fischeri (formerly classified as Vibrio fischeri) where the signalling molecule N‐(3‐oxohexanoyl)‐L‐homoserine lactone (OHHL) is synthesized by the action of the Luxl protein. OHHL is thought to bind to the LuxR protein, allowing it to act as a positive transcriptional activator in an autoinduction process that physiologically couples cell density (and growth phase) to the expression of the bioluminescence genes. Based on the growing information on Luxl and LuxR homologues in other N‐AHL‐producing bacterial species such as Erwinia carotovora, Pseudomonas aeruginosa, Yersinia enterocolitica, Agrobacterium tumefaciens and Rhizobium legumino‐sarum, it seems that analogues of the P. fischeri lux autoinducer sensing system are widely distributed in bacteria. The general physiological function of these simple chemical signalling systems appears to be the modulation of discrete and diverse metabolic processes in concert with cell density. In an evolutionary sense, the elaboration and action of these bacterial pheromones can be viewed as an example of multi‐cellularity in prokaryotic populations.

Bibliography

Salmond, G. P. C., Bycroft, B. W., Stewart, G. S. A. B., & Williams, P. (1995). The bacterial ‘enigma’: cracking the code of cell–cell communication. Molecular Microbiology, 16(4), 615–624. Portico.

Authors 4
  1. G. P. C. Salmond (first)
  2. B. W. Bycroft (additional)
  3. G. S. A. B. Stewart (additional)
  4. P. Williams (additional)
References 62 Referenced 295
  1. 10.1128/jb.174.22.7138-7143.1992
  2. 10.1002/bio.1170080506
  3. 10.1016/0378-1119(92)90633-Z
  4. 10.1042/bj2880997
  5. 10.1146/annurev.py.32.090194.001221
  6. 10.7164/antibiotics.46.441
  7. 10.1073/pnas.88.24.11115
  8. 10.1128/jb.174.12.4064-4069.1992
  9. 10.1016/0092-8674(93)90153-H
  10. 10.1128/jb.174.12.4026-4035.1992
  11. 10.1038/nbt0489-352
  12. 10.1073/pnas.86.15.5688
  13. 10.1146/annurev.py.32.090194.002403
  14. 10.1128/jb.174.15.5132-5135.1992
  15. 10.1128/jb.164.1.45-50.1985 / J Bacteriol by Dunlap P.V. (1985)
  16. 10.1128/jb.170.9.4040-4046.1988
  17. 10.1021/bi00512a013
  18. 10.1007/BF00252215
  19. 10.1007/BF00010013
  20. 10.1007/978-1-4615-9456-7_2
  21. 10.1016/0092-8674(83)90063-6
  22. 10.1128/jb.176.10.2796-2806.1994
  23. 10.1128/jb.176.2.269-275.1994
  24. 10.1094/MPMI-7-0455
  25. 10.1128/jb.173.9.3000-3009.1991
  26. 10.1128/jb.174.13.4384-4390.1992
  27. 10.1128/jb.176.10.3076-3080.1994
  28. 10.1007/BF00409093
  29. 10.3109/07388559009038205
  30. 10.1038/363154a0
  31. 10.1016/0076-6879(90)83009-X
  32. 10.1111/j.1365-2958.1994.tb01073.x
  33. 10.1126/science.7545940
  34. {'key': 'e_1_2_1_35_1', 'first-page': '378', 'volume-title': 'Molecular Genetics of Plant–Microbe Interactions', 'author': 'Johnston A.W.B.', 'year': '1988'} / Molecular Genetics of Plant–Microbe Interactions by Johnston A.W.B. (1988)
  35. 10.1002/j.1460-2075.1993.tb05902.x
  36. 10.1016/0092-8674(93)90268-U
  37. 10.1128/JB.163.3.1210-1214.1985
  38. 10.1128/jb.175.22.7307-7312.1993
  39. 10.1128/jb.176.24.7558-7565.1994
  40. 10.1111/j.1365-2958.1995.mmi_17020333.x
  41. 10.1073/pnas.89.5.1562
  42. 10.1099/13500872-141-3-541
  43. 10.1128/MMBR.55.1.123-142.1991
  44. {'key': 'e_1_2_1_45_1', 'first-page': '313', 'volume': '34', 'author': 'Meighen E.M.', 'year': '1993', 'journal-title': 'Adv Microbiol Physiol'} / Adv Microbiol Physiol by Meighen E.M. (1993)
  45. 10.1007/BF00446657
  46. 10.1128/jb.104.1.313-322.1970
  47. 10.1016/S0021-9258(17)32089-6
  48. 10.1128/jb.176.7.2044-2054.1994
  49. 10.7164/antibiotics.35.653
  50. 10.1126/science.8493556
  51. 10.1073/pnas.91.1.197
  52. 10.1128/jb.176.13.3966-3974.1994
  53. 10.1038/362448a0
  54. 10.1002/j.1460-2075.1993.tb05901.x
  55. 10.1016/S0021-9258(18)42570-7 / J Biol Chem by Shadel G.S. (1992)
  56. 10.1093/nar/14.5.2301
  57. 10.1111/j.1365-2958.1993.tb00923.x
  58. 10.1016/0966-842X(94)90110-Q
  59. 10.1111/j.1365-2958.1995.mmi_17020345.x
  60. 10.1002/bio.1170020205
  61. 10.1002/j.1460-2075.1991.tb04900.x
  62. 10.1038/362446a0
Dates
Type When
Created 18 years, 10 months ago (Oct. 27, 2006, 11:20 p.m.)
Deposited 1 year, 10 months ago (Oct. 26, 2023, 1:38 p.m.)
Indexed 3 weeks, 6 days ago (Aug. 6, 2025, 8:23 a.m.)
Issued 30 years, 4 months ago (May 1, 1995)
Published 30 years, 4 months ago (May 1, 1995)
Published Online 18 years, 10 months ago (Oct. 27, 2006)
Published Print 30 years, 4 months ago (May 1, 1995)
Funders 0

None

@article{Salmond_1995, title={The bacterial ‘enigma’: cracking the code of cell–cell communication}, volume={16}, ISSN={1365-2958}, url={http://dx.doi.org/10.1111/j.1365-2958.1995.tb02424.x}, DOI={10.1111/j.1365-2958.1995.tb02424.x}, number={4}, journal={Molecular Microbiology}, publisher={Wiley}, author={Salmond, G. P. C. and Bycroft, B. W. and Stewart, G. S. A. B. and Williams, P.}, year={1995}, month=may, pages={615–624} }