10.1111/j.1151-2916.1973.tb15431.x
Crossref journal-article
Wiley
Journal of the American Ceramic Society (311)
Abstract

A mass transport equation which takes into account parallel diffusion paths for both anions and cations was derived and applied to the diffusional creep of polycrystalline ionic solids. From the results of the analysis, several limiting conditions were found for grain‐boundary‐ and lattice‐diffusion‐controlled kinetics. These conditions depend on temperature, grain size, and type and concentration of cation impurities. Examples of these limiting situations are given for the creep of polycrystalline Fe‐doped MgO and transition‐metal‐doped Al2O3.SummaryA mass transport equation which takes into account parallel diffusion paths for anions and cations was derived and applied to the diffusional creep of polycrystalline ionic solids. The effect of grain size and cation impurities of variable valence in solid solution on the relative contributions of lattice and grain‐boundary diffusion of different ionic species in polycrystalline MgO and Al2O3 was examined. Depending on the temperature, grain size, impurity level, and O2 partial pressure, several limiting conditions were found: Limit I: At very small grain sizes and reasonably small cation lattice diffusivities the creep rate will be controlled by the slower‐moving ion in the grain‐boundary regions (i.e. Coble creep). Limit II: For intermediate grain sizes and cation lattice diffusivities the creep rate will be controlled by cation lattice diffusion when anion transport is significantly faster near grain boundaries than in the lattice (i.e. Nabarro‐Herring creep). Limit III: For an appropriate combination of large grain size and high cation lattice diffusivity the creep rate will be controlled by anion boundary diffusion (i.e. Coble creep).Well‐defined examples of limits I and II have been observed in the creep of Fe‐doped polycrystalline MgO, and tentative evidence exists for limit III. Most results of studies of creep in polycrystalline Al2O3 (doped and undoped) fall within limit II, with some overlap with limit III.The model developed in the present work explains much of the data in the literature in which creep rates correspond to cation lattice mobilities. It is concluded that in the creep of polycrystalline ionic solids anion transport near grain boundaries is rapid and can, in some circumstances, be rate‐controlling. It should also be possible to apply this model to sintering and thermal‐grooving data for such systems, particularly for Al2O3, in which cation lattice diffusion is frequently observed to be rate‐controlling.32

Bibliography

GORDON, R. S. (1973). Mass Transport in the Diffusional Creep of Ionic Solids. Journal of the American Ceramic Society, 56(3), 147–152. Portico.

Authors 1
  1. RONALD S. GORDON (first)
References 36 Referenced 104
  1. 10.1111/j.1151-2916.1964.tb14395.x
  2. {'issue': '11', 'key': 'e_1_2_1_3_2', 'first-page': '594', 'article-title': 'Creep of Dense, Polycrystalline Magnesium Oxide', 'volume': '49', 'author': 'Passmore E. M.', 'year': '1966', 'journal-title': 'Ibid.'} / Ibid. / Creep of Dense, Polycrystalline Magnesium Oxide by Passmore E. M. (1966)
  3. {'issue': '6', 'key': 'e_1_2_1_4_2', 'first-page': '303', 'article-title': 'High‐Temperature Creep of Polycrystalline Magnesia: I', 'volume': '51', 'author': 'Tagai Hideo', 'year': '1968', 'journal-title': 'Ibid.'} / Ibid. / High‐Temperature Creep of Polycrystalline Magnesia: I by Tagai Hideo (1968)
  4. {'key': 'e_1_2_1_5_2', 'first-page': '310', 'article-title': 'High‐Temperature Creep of Polycrystalline Magnesia: II', 'author': 'Zisner Tuvia', 'journal-title': 'Ibid.'} / Ibid. / High‐Temperature Creep of Polycrystalline Magnesia: II by Zisner Tuvia
  5. {'issue': '5', 'key': 'e_1_2_1_6_2', 'first-page': '241', 'article-title': 'Creep of Polycrystalline MgO and MgO‐Fe2O3 Solid Solutions at High Temperatures', 'volume': '53', 'author': 'Terwilliger G. R.', 'year': '1970', 'journal-title': 'Ibid.'} / Ibid. / Creep of Polycrystalline MgO and MgO‐Fe2O3 Solid Solutions at High Temperatures by Terwilliger G. R. (1970)
  6. R. T.Tremper “Effect of Nonstoichiometry on the Viscous Creep of Iron‐Doped Polycrystalline Magnesia”;Ph.D. Thesis University of Utah Salt Lake City UT 1971. (10.2172/4717607)
  7. 10.1111/j.1151-2916.1963.tb11711.x
  8. 10.1007/978-1-4684-2643-4_16
  9. G. W.HollenbergandR. S.Gordon “Effect of Oxygen Partial Pressure on the Creep of Polycrystalline Al2O3Doped with Cr Fe or Ti”; this issue pp.140–47. (10.1111/j.1151-2916.1973.tb15430.x)
  10. G. W.Hollenberg “Effect of Oxygen Partial Pressure on the Creep of Polycrystalline Al2O3Doped with Transition Metal Impurities”;Ph.D. Thesis University of Utah Salt Lake City UT 1972. (10.2172/4663569)
  11. 10.1111/j.1151-2916.1972.tb11338.x
  12. {'issue': '5', 'key': 'e_1_2_1_13_2', 'first-page': '264', 'article-title': 'Deformation Behavior of Dense Polycrystalline SiC', 'volume': '49', 'author': 'Farnsworth P. L.', 'year': '1966', 'journal-title': 'Ibid.'} / Ibid. / Deformation Behavior of Dense Polycrystalline SiC by Farnsworth P. L. (1966)
  13. 10.1063/1.1714501
  14. 10.1111/j.1151-2916.1971.tb12309.x
  15. {'issue': '18', 'key': 'e_1_2_1_16_2', 'first-page': '1204', 'article-title': 'Determination of Auto‐diffusion in Mono‐ and Polycrystalline Sodium Chloride', 'volume': '241', 'author': 'Laurent J. F.', 'year': '1955', 'journal-title': 'C. R. Acad. Sci.'} / C. R. Acad. Sci. / Determination of Auto‐diffusion in Mono‐ and Polycrystalline Sodium Chloride by Laurent J. F. (1955)
  16. 10.1016/0022-3697(58)90265-8
  17. 10.1063/1.1731170
  18. 10.1111/j.1151-2916.1963.tb11696.x
  19. {'issue': '1', 'key': 'e_1_2_1_20_2', 'first-page': '60', 'article-title': 'Rate‐Determining Species in Diffusion‐Controlled Processes in Al2O3', 'volume': '54', 'author': 'Mistler R. E.', 'year': '1971', 'journal-title': 'Ibid.'} / Ibid. / Rate‐Determining Species in Diffusion‐Controlled Processes in Al2O3 by Mistler R. E. (1971)
  20. {'issue': '4', 'key': 'e_1_2_1_21_2', 'first-page': '188', 'article-title': 'Oxygen Grain‐Boundary Diffusion in MgO', 'author': 'McKenzie D. R.', 'journal-title': 'Ibid.'} / Ibid. / Oxygen Grain‐Boundary Diffusion in MgO by McKenzie D. R.
  21. 10.1063/1.1661029
  22. {'issue': '6', 'key': 'e_1_2_1_23_2', 'first-page': '2309', 'article-title': 'Chemical Potentials and Initial Sintering in Pure Metals and Ionic Compounds', 'volume': '37', 'author': 'Readey D. W.', 'year': '1966', 'journal-title': 'Ibid.'} / Ibid. / Chemical Potentials and Initial Sintering in Pure Metals and Ionic Compounds by Readey D. W. (1966)
  23. 10.1111/j.1151-2916.1966.tb13286.x
  24. 10.1063/1.1714604
  25. 10.1088/0034-4885/27/1/305
  26. {'key': 'e_1_2_1_27_2', 'volume-title': 'Creep by Grain Boundary Diffusion', 'author': 'Ruoff A. L.', 'year': '1965'} / Creep by Grain Boundary Diffusion by Ruoff A. L. (1965)
  27. {'issue': '4', 'key': 'e_1_2_1_28_2', 'first-page': '1113', 'article-title': 'Grain Boundary Sliding and Diffusional Creep', 'volume': '2', 'author': 'Ashby M. F.', 'year': '1971', 'journal-title': 'Trans. AIME'} / Trans. AIME / Grain Boundary Sliding and Diffusional Creep by Ashby M. F. (1971)
  28. 10.1063/1.1731286
  29. R. T.Tremper R. A.Giddings andR. S.Gordon;unpublished work.
  30. {'key': 'e_1_2_1_31_2', 'volume-title': 'Mass Transport in MgO at High Temperatures', 'author': 'Wuensch B. J.', 'year': '1971'} / Mass Transport in MgO at High Temperatures by Wuensch B. J. (1971)
  31. 10.1111/j.1151-2916.1971.tb12382.x
  32. W. R.Cannon “Mechanisms of High‐Temperature Creep in Polycrystalline Aluminum Oxide”;Ph.D. Thesis Stanford University Stanford CA 1971.
  33. 10.1111/j.1151-2916.1968.tb11915.x
  34. {'issue': '3', 'key': 'e_1_2_1_35_2', 'first-page': '136', 'article-title': 'Effect of TiO2 on the Initial Sintering of Al2O3', 'volume': '53', 'author': 'Bagley R. D.', 'year': '1970', 'journal-title': 'Ibid.'} / Ibid. / Effect of TiO2 on the Initial Sintering of Al2O3 by Bagley R. D. (1970)
  35. W.Raja Rao “Effect of Iron Oxide on Sintering Kinetics of Alumina”;Ph.D. Thesis University of Utah Salt Lake City UT 1972.
  36. 10.1111/j.1151-2916.1972.tb11308.x
Dates
Type When
Created 19 years, 2 months ago (June 6, 2006, 10:03 p.m.)
Deposited 1 year, 9 months ago (Nov. 22, 2023, 9:27 p.m.)
Indexed 1 month, 3 weeks ago (July 2, 2025, 12:19 a.m.)
Issued 52 years, 5 months ago (March 1, 1973)
Published 52 years, 5 months ago (March 1, 1973)
Published Online 19 years, 2 months ago (June 2, 2006)
Published Print 52 years, 5 months ago (March 1, 1973)
Funders 0

None

@article{GORDON_1973, title={Mass Transport in the Diffusional Creep of Ionic Solids}, volume={56}, ISSN={1551-2916}, url={http://dx.doi.org/10.1111/j.1151-2916.1973.tb15431.x}, DOI={10.1111/j.1151-2916.1973.tb15431.x}, number={3}, journal={Journal of the American Ceramic Society}, publisher={Wiley}, author={GORDON, RONALD S.}, year={1973}, month=mar, pages={147–152} }