10.1111/cgf.12178
Crossref journal-article
Wiley
Computer Graphics Forum (311)
Abstract

AbstractRigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp.

Bibliography

Bouaziz, S., Tagliasacchi, A., & Pauly, M. (2013). Sparse Iterative Closest Point. Computer Graphics Forum, 32(5), 113–123. Portico.

Authors 3
  1. Sofien Bouaziz (first)
  2. Andrea Tagliasacchi (additional)
  3. Mark Pauly (additional)
References 48 Referenced 384
  1. 10.1145/1360612.1360684
  2. 10.1561/2200000015
  3. {'key': 'e_1_2_10_4_2', 'volume-title': 'Metric Space & Complex Analysis', 'author': 'Banerjee A. K A.', 'year': '2008'} / Metric Space & Complex Analysis by Banerjee A. K A. (2008)
  4. BaeK.‐H. LichtiD. D.:Automated registration of unorganised point clouds from terrestrial laser scanners. InIn: International Archives of Photogrammetry and Remote Sensing Vol. XXXV Part B5 Proceedings of the ISPRS working group V/2(2004) pp.222–227. 2.
  5. 10.1109/34.121791
  6. 10.1561/2200000016
  7. 10.1017/CBO9780511804441
  8. 10.1109/LSP.2007.898300
  9. ChamplebouxG. LavalleeS. SzeliskiR. BrunieL.:From accurate range imaging sensor calibration to accurate model‐based 3d object localization. InComputer Vision and Pattern Recognition(1992) pp.83–89. 3.
  10. ChenY. MedioniG.:Object modeling by registration of multiple range images. InProc. of the IEEE Intern. conf. on Robotics and Automation(1991) pp.2724–2729. 3.
  11. 10.1016/S1077-3142(03)00009-2
  12. 10.1109/TIT.2005.862083
  13. 10.1016/j.imavis.2004.05.007
  14. 10.1109/MSP.2007.914731
  15. ChartrandR. WohlbergB.:A Nonconvex Admm Algorithm for Group Sparsity With Sparse Groups.Submitted to IEEE ICASSP(2013). 4. (10.1109/ICASSP.2013.6638818)
  16. ChartrandR. YinW.:Iteratively reweighted algorithms for compressive sensing. InICASSP(2008) pp.3869–3872. 6. (10.1109/ICASSP.2008.4518498)
  17. 10.1109/TSP.2010.2044837
  18. 10.1007/s001380050048
  19. 10.1145/355744.355745
  20. 10.1016/j.cagd.2009.09.001
  21. 10.1016/j.imavis.2003.09.004
  22. GelfandN. MitraN. J. GuibasL. PottmannH.:Robust global registration.Computer Graphics Forum (Proc. of the EG/SIGGRAPH Symposium on Geometry processing)(2005) 197–206. 2.
  23. {'key': 'e_1_2_10_24_2', 'first-page': '418', 'volume-title': 'Proc. of the European Conf. on Computer Vision', 'author': 'Granger S.', 'year': '2002'} / Proc. of the European Conf. on Computer Vision by Granger S. (2002)
  24. HontaniH. MatsunoT. SawadaY.:Robust non‐rigid ICP using outlier‐sparsity regularization. InComputer Vision and Pattern Recognition(2012). 4. (10.1109/CVPR.2012.6247673)
  25. 10.1109/TPAMI.2010.223
  26. 10.1016/j.cad.2004.02.009
  27. LiH. SumnerR. W. PaulyM.:Global correspondence optimization for non‐rigid registration of depth scans. InProc. of the EG/SIGGRAPH Symposium on Geometry processing(2008). 2.
  28. 10.1109/70.210797
  29. MitraN. J. GelfandN. PottmannH. GuibasL.:Registration of Point Cloud Data from a Geometric Optimization Perspective.Computer Graphics Forum (Proc. of the EG/SIGGRAPH Symposium on Geometry processing)(2004) 22–31. 3. (10.1145/1057432.1057435)
  30. 10.1109/TSP.2012.2212015
  31. 10.1006/cviu.1995.1024
  32. {'key': 'e_1_2_10_33_2', 'volume-title': 'Numerical optimization', 'author': 'Nocedal J.', 'year': '2006'} / Numerical optimization by Nocedal J. (2006)
  33. ParikhN. BoydS.:Proximal Algorithms.Found. and Trends in Optimization(2013) to appear. 6 11.
  34. PyzaraA. BylinaB. BylinaJ.:The influence of a matrix condition number on iterative methods convergence. InConf. on Comp. Science and Information Systems(2011) pp.459–464. 8.
  35. PottmannH. HoferM.:Geometry of the squared distance function to curves and surfaces.Visualization and Mathematics III Springer(2003) 221–242. 3. (10.1007/978-3-662-05105-4_12)
  36. 10.1007/s11263-006-5167-2
  37. 10.1016/j.cviu.2004.04.002
  38. PaulyM. MitraN. J. GiesenJ. GrossM. GuibasL. J.:Example‐based 3d scan completion. InProc. of the EG/SIGGRAPH Symposium on Geometry processing(2005). 2.
  39. PulliK.:Multiview registration for large data sets. InProc. of 3DIM(1999) pp.160–168. 2.
  40. RusinkiewiczS. LevoyM.:Efficient variants of the ICP algorithm.3‐D Digital Imaging and Modeling(2001) 145–152. 2 3 6 7 8.
  41. {'key': 'e_1_2_10_42_2', 'volume': '2013', 'author': 'Rusinkiewicz S.', 'journal-title': 'Derivation of point to plane minimization'} / Derivation of point to plane minimization by Rusinkiewicz S.
  42. SegalA. HaehnelD. ThrunS.:Generalized‐icp. InProc. of Robotics: Science and Systems (RSS)(2009) pp.26–27. 2. (10.15607/RSS.2009.V.021)
  43. {'key': 'e_1_2_10_44_2', 'first-page': '1', 'volume-title': 'Trans. on Visualization and Computer Graphics', 'author': 'Tam G.', 'year': '2012'} / Trans. on Visualization and Computer Graphics by Tam G. (2012)
  44. 10.1016/S0167-8655(99)00055-0
  45. TsinY. KanadeT.:A correlation‐based approach to robust point set registration. InIn ECCV(2004) pp.558–569. 3. (10.1007/978-3-540-24672-5_44)
  46. 10.1111/j.1467-8659.2011.01884.x
  47. 10.1145/2010324.1964972
  48. 10.1007/BF01427149
Dates
Type When
Created 12 years ago (Aug. 19, 2013, 3:31 p.m.)
Deposited 1 year, 10 months ago (Oct. 15, 2023, 6:23 p.m.)
Indexed 4 days, 12 hours ago (Aug. 23, 2025, 9:51 p.m.)
Issued 12 years ago (Aug. 1, 2013)
Published 12 years ago (Aug. 1, 2013)
Published Online 12 years ago (Aug. 19, 2013)
Published Print 12 years ago (Aug. 1, 2013)
Funders 0

None

@article{Bouaziz_2013, title={Sparse Iterative Closest Point}, volume={32}, ISSN={1467-8659}, url={http://dx.doi.org/10.1111/cgf.12178}, DOI={10.1111/cgf.12178}, number={5}, journal={Computer Graphics Forum}, publisher={Wiley}, author={Bouaziz, Sofien and Tagliasacchi, Andrea and Pauly, Mark}, year={2013}, month=aug, pages={113–123} }