Crossref journal-article
Wiley
Protein Science (311)
Abstract

AbstractUnder appropriate conditions, essentially all proteins are able to aggregate to form long, well‐ordered and β‐sheet‐rich arrays known as amyloid‐like fibrils. These fibrils consist of varying numbers of intertwined protofibrils and can for any given protein exhibit a wealth of different forms at the ultrastructural level. Traditionally, this structural variability or polymorphism has been attributed to differences in the assembly of a common protofibril structure. However, recent work on glucagon, insulin, and the Aβ peptide suggests that this polymorphism can occur at the level of secondary structure. Simple variations in either solvent conditions such as temperature, protein concentration, and ionic strength or external mechanical influences such as agitation can lead to formation of fibrils with markedly different characteristics. In some cases, these characteristics can be passed on to new fibrils in a strain‐specific manner, similar to what is known for prions. The preferred structure of fibrils formed can be explained in terms of selective pressure and survival of the fittest; the most populated types of fibrils we observe at the end of an experiment are those that had the fastest overall growth rate under the given conditions. Fibrillar polymorphism is probably a consequence of the lack of structural restraints on a nonfunctional conformational state.

Bibliography

Pedersen, J. S., & Otzen, D. E. (2008). Amyloid—a state in many guises: Survival of the fittest fibril fold. Protein Science, 17(1), 2–10. Portico.

Authors 2
  1. Jesper S. Pedersen (first)
  2. Daniel E. Otzen (additional)
References 73 Referenced 77
  1. 10.1074/jbc.M504298200
  2. 10.1021/bi6025374
  3. 10.1126/science.181.4096.223
  4. 10.1073/pnas.230315097
  5. 10.1021/bi0011330
  6. 10.1006/jsbi.1995.1024
  7. 10.1021/bi991527v
  8. 10.1038/375698a0
  9. 10.1038/sj.embor.7400497
  10. 10.1038/nature03986
  11. 10.1146/annurev.biochem.75.101304.123901
  12. 10.1371/journal.pbio.0020321
  13. 10.1016/S0022-2836(03)00659-4
  14. 10.1016/S0968-0004(99)01445-0
  15. 10.1088/0957-4484/17/16/001
  16. 10.1016/j.bbapap.2005.12.008
  17. 10.1110/ps.03607204
  18. 10.1038/nbt1012
  19. 10.1016/S0076-6879(99)09019-9
  20. 10.1016/0022-2836(85)90175-5
  21. {'key': 'e_1_2_10_22_1', 'volume-title': 'A guide to enzyme catalysis and protein folding', 'author': 'Fersht A.R.', 'year': '1999'} / A guide to enzyme catalysis and protein folding by Fersht A.R. (1999)
  22. 10.1002/1521-3773(20020118)41:2<257::AID-ANIE257>3.0.CO;2-M
  23. 10.1006/jsbi.1997.3858
  24. 10.1006/jsbi.2000.4259
  25. 10.1016/j.jmb.2005.07.029
  26. 10.1016/S0006-3495(04)74119-3
  27. 10.1016/j.jmb.2003.12.004
  28. 10.1016/j.ijbiomac.2007.03.008
  29. 10.1073/pnas.0506109102
  30. 10.1006/jmbi.1996.0148
  31. 10.1073/pnas.252625999
  32. 10.1073/pnas.142459399
  33. 10.1126/science.1079469
  34. 10.1083/jcb.200304074
  35. 10.1021/bi010805z
  36. 10.1038/nature02391
  37. 10.1103/PhysRevLett.96.238301
  38. 10.1016/j.sbi.2007.01.007
  39. 10.1006/jmbi.2000.3862
  40. 10.1110/ps.04707004
  41. 10.1038/nsb1195-990 / Nat. Struct. Biol. / Structural model for the β‐amyloid fibril based on interstrand alignment of an antiparallel‐sheet comprising a C‐terminal peptide by Lansbury P.T. (1995)
  42. 10.1111/j.1432-1033.1974.tb03707.x
  43. 10.1038/nsmb748
  44. 10.1073/pnas.0406847102
  45. 10.1021/bi015894u
  46. 10.1146/annurev.bb.18.060189.000521
  47. 10.1016/S0969-2126(00)80023-4
  48. 10.1080/13506120400014831
  49. {'key': 'e_1_2_10_50_1', 'first-page': '949', 'article-title': 'BIGH3 mutation spectrum in corneal dystrophies', 'volume': '43', 'author': 'Munier F.L.', 'year': '2002', 'journal-title': 'Invest. Ophthalmol. Vis. Sci.'} / Invest. Ophthalmol. Vis. Sci. / BIGH3 mutation spectrum in corneal dystrophies by Munier F.L. (2002)
  50. 10.1021/bi034938r
  51. 10.1002/1520-6017(200101)90:1<29::AID-JPS4>3.0.CO;2-4
  52. 10.1021/bi002555c
  53. 10.1074/jbc.M311300200
  54. 10.1073/pnas.96.21.11746
  55. 10.1073/pnas.160086297
  56. 10.1529/biophysj.105.076927
  57. 10.1016/j.jmb.2005.04.016
  58. 10.1016/j.jmb.2004.06.020
  59. 10.1016/j.jmb.2005.09.100
  60. 10.1021/bi061228n
  61. 10.1529/biophysj.105.070912
  62. 10.1073/pnas.262663499
  63. 10.1126/science.1105850
  64. 10.1021/bi048029t
  65. 10.1038/nature05695
  66. 10.1006/jmbi.2000.3908
  67. 10.1006/jsbi.2000.4221
  68. 10.1016/j.jmb.2006.08.081
  69. {'key': 'e_1_2_10_70_1', 'first-page': '120', 'article-title': 'Sulfated glycosaminoglycans: A common constituent of all amyloids?', 'volume': '56', 'author': 'Snow A.D.', 'year': '1987', 'journal-title': 'Lab. Invest.'} / Lab. Invest. / Sulfated glycosaminoglycans: A common constituent of all amyloids? by Snow A.D. (1987)
  70. 10.1038/nature02392
  71. 10.1038/nature04922
  72. 10.1073/pnas.0511295103
  73. 10.1006/jmbi.1996.0133
Dates
Type When
Created 17 years, 9 months ago (Nov. 27, 2007, 8:44 p.m.)
Deposited 1 year, 11 months ago (Sept. 29, 2023, 3:54 a.m.)
Indexed 5 months ago (April 1, 2025, 9:43 a.m.)
Issued 17 years, 8 months ago (Jan. 1, 2008)
Published 17 years, 8 months ago (Jan. 1, 2008)
Published Online 16 years, 8 months ago (Jan. 2, 2009)
Published Print 17 years, 8 months ago (Jan. 1, 2008)
Funders 0

None

@article{Pedersen_2008, title={Amyloid—a state in many guises: Survival of the fittest fibril fold}, volume={17}, ISSN={1469-896X}, url={http://dx.doi.org/10.1110/ps.073127808}, DOI={10.1110/ps.073127808}, number={1}, journal={Protein Science}, publisher={Wiley}, author={Pedersen, Jesper S. and Otzen, Daniel E.}, year={2008}, month=jan, pages={2–10} }