Abstract
AbstractAs the number of complete genomes rapidly increases, accurate methods to automatically predict the subcellular location of proteins are increasingly useful to help their functional annotation. In order to improve the predictive accuracy of the many prediction methods developed to date, a novel representation of protein sequences is proposed. This representation involves local compositions of amino acids and twin amino acids, and local frequencies of distance between successive (basic, hydrophobic, and other) amino acids. For calculating the local features, each sequence is split into three parts: N‐terminal, middle, and C‐terminal. The N‐terminal part is further divided into four regions to consider ambiguity in the length and position of signal sequences. We tested this representation with support vector machines on two data sets extracted from the SWISS‐PROT database. Through fivefold cross‐validation tests, overall accuracies of more than 87% and 91% were obtained for eukaryotic and prokaryotic proteins, respectively. It is concluded that considering the respective features in the N‐terminal, middle, and C‐terminal parts is helpful to predict the subcellular location.
References
43
Referenced
123
10.1093/nar/29.1.37
10.1016/j.jmb.2004.05.028
10.1093/nar/gkh350
10.1093/bioinformatics/bti309
{'key': 'e_1_2_7_6_1', 'first-page': '440', 'article-title': 'Chloroplast transit peptides: Structure, function and evolution', 'volume': '10', 'author': 'Bruce B.D.', 'year': '2000', 'journal-title': 'Trends Biochem. Sci.'}
/ Trends Biochem. Sci. / Chloroplast transit peptides: Structure, function and evolution by Bruce B.D. (2000)10.1093/bioinformatics/bth054
10.1006/jmbi.1996.0804
10.1002/prot.1035
10.1074/jbc.M204161200
10.1016/j.bbrc.2003.10.062
10.1002/jcb.10790
10.1006/bbrc.1998.9498
10.1093/protein/12.2.107
10.3109/10409239509083488
10.1016/S0955-0674(97)80023-3
10.1110/ps.8.5.978
10.1006/jmbi.2000.3903
10.1142/9781860947322_0012
{'key': 'e_1_2_7_20_1', 'first-page': '147', 'volume-title': 'Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology', 'author': 'Horton P.', 'year': '1997'}
/ Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology by Horton P. (1997)10.1093/bioinformatics/17.8.721
{'key': 'e_1_2_7_22_1', 'first-page': '41', 'volume-title': 'Advances in kernel methods—Support vector learning', 'author': 'Joachims T.', 'year': '1999'}
/ Advances in kernel methods—Support vector learning by Joachims T. (1999)10.1105/tpc.11.4.557
{'key': 'e_1_2_7_24_1', 'first-page': '158', 'volume-title': 'Proceedings of the 3rd Annual Conference of the Korean Society for Bioinformatics', 'author': 'Kim J.K.', 'year': '2004'}
/ Proceedings of the 3rd Annual Conference of the Korean Society for Bioinformatics by Kim J.K. (2004)10.1093/nar/gkg101
10.1016/0005-2795(75)90109-9
10.1074/jbc.M300690200
{'key': 'e_1_2_7_28_1', 'first-page': '11', 'article-title': 'Optimal alignments in linear space', 'volume': '4', 'author': 'Myers E.W.', 'year': '1988', 'journal-title': 'Comput. Appl. Biosci.'}
/ Comput. Appl. Biosci. / Optimal alignments in linear space by Myers E.W. (1988)10.1016/S0888-7543(05)80111-9
10.1016/0022-2836(70)90057-4
10.1146/annurev.biochem.66.1.863
{'key': 'e_1_2_7_32_1', 'first-page': '218', 'article-title': 'Multi‐class support vector machines for protein secondary structure prediction', 'volume': '14', 'author': 'Nguyen M.N.', 'year': '2003', 'journal-title': 'Genome Inform. Ser. Workshop Genome Inform.'}
/ Genome Inform. Ser. Workshop Genome Inform. / Multi‐class support vector machines for protein secondary structure prediction by Nguyen M.N. (2003)10.1093/protein/10.1.1
10.1093/oxfordjournals.jbchem.a022036
10.1093/bioinformatics/btg222
10.1016/0076-6879(90)83007-V
10.1073/pnas.85.8.2444
10.1002/pmic.200300769
10.1093/nar/26.9.2230
10.1034/j.1600-0854.2001.1r010.x
{'key': 'e_1_2_7_41_1', 'volume-title': 'Learning with kernels—Support vector machines, regularization, optimization, and beyond', 'author': 'Schölkopf B.', 'year': '2002'}
/ Learning with kernels—Support vector machines, regularization, optimization, and beyond by Schölkopf B. (2002)10.1016/0022-2836(81)90087-5
10.1007/BF01868635
10.1016/S0014-5793(99)00506-2
Dates
Type | When |
---|---|
Created | 19 years, 9 months ago (Oct. 26, 2005, 2:02 p.m.) |
Deposited | 1 year, 10 months ago (Oct. 9, 2023, 4:16 p.m.) |
Indexed | 11 months, 3 weeks ago (Aug. 27, 2024, 8:33 p.m.) |
Issued | 19 years, 9 months ago (Nov. 1, 2005) |
Published | 19 years, 9 months ago (Nov. 1, 2005) |
Published Online | 16 years, 7 months ago (Jan. 1, 2009) |
Published Print | 19 years, 9 months ago (Nov. 1, 2005) |
@article{Matsuda_2005, title={A novel representation of protein sequences for prediction of subcellular location using support vector machines}, volume={14}, ISSN={1469-896X}, url={http://dx.doi.org/10.1110/ps.051597405}, DOI={10.1110/ps.051597405}, number={11}, journal={Protein Science}, publisher={Wiley}, author={Matsuda, Setsuro and Vert, Jean‐Philippe and Saigo, Hiroto and Ueda, Nobuhisa and Toh, Hiroyuki and Akutsu, Tatsuya}, year={2005}, month=nov, pages={2804–2813} }