Crossref journal-article
Wiley
Protein Science (311)
Abstract

AbstractComparative structure models are available for two orders of magnitude more protein sequences than are experimentally determined structures. These models, however, suffer from two limitations that experimentally determined structures do not: They frequently contain significant errors, and their accuracy cannot be readily assessed. We have addressed the latter limitation by developing a protocol optimized specifically for predicting the Cα root‐mean‐squared deviation (RMSD) and native overlap (NO3.5Å) errors of a model in the absence of its native structure. In contrast to most traditional assessment scores that merely predict one model is more accurate than others, this approach quantifies the error in an absolute sense, thus helping to determine whether or not the model is suitable for intended applications. The assessment relies on a model‐specific scoring function constructed by a support vector machine. This regression optimizes the weights of up to nine features, including various sequence similarity measures and statistical potentials, extracted from a tailored training set of models unique to the model being assessed: If possible, we use similarly sized models with the same fold; otherwise, we use similarly sized models with the same secondary structure composition. This protocol predicts the RMSD and NO3.5Å errors for a diverse set of 580,317 comparative models of 6174 sequences with correlation coefficients (r) of 0.84 and 0.86, respectively, to the actual errors. This scoring function achieves the best correlation compared to 13 other tested assessment criteria that achieved correlations ranging from 0.35 to 0.71.

Bibliography

Eramian, D., Eswar, N., Shen, M., & Sali, A. (2008). How well can the accuracy of comparative protein structure models be predicted? Protein Science, 17(11), 1881–1893. Portico.

Authors 4
  1. David Eramian (first)
  2. Narayanan Eswar (additional)
  3. Min‐Yi Shen (additional)
  4. Andrej Sali (additional)
References 71 Referenced 123
  1. {'key': 'e_1_2_6_2_1', 'first-page': '1650', 'article-title': 'ROC‐curve analysis. A statistical method for the evaluation of diagnostic tests', 'volume': '152', 'author': 'Albeck M.J.', 'year': '1990', 'journal-title': 'Ugeskr. Laeger'} / Ugeskr. Laeger / ROC‐curve analysis. A statistical method for the evaluation of diagnostic tests by Albeck M.J. (1990)
  2. 10.1093/nar/25.17.3389
  3. 10.1093/nar/gkh039
  4. 10.1093/nar/gkh131
  5. 10.1126/science.1065659
  6. 10.1093/nar/28.1.235
  7. 10.1021/bi048252q
  8. 10.1126/science.1113801
  9. 10.1515/BC.2005.041
  10. 10.1016/j.str.2004.05.018
  11. 10.1093/protein/gzi019
  12. 10.1002/j.1460-2075.1986.tb04288.x
  13. 10.1016/j.jmb.2006.08.035
  14. 10.1210/me.2004-0435
  15. 10.1002/(SICI)1097-0134(1999)37:3 <112::AID-PROT15>3.0.CO;2-R
  16. 10.1110/ps.062095806
  17. 10.1093/nar/gkg543
  18. {'key': 'e_1_2_6_19_1', 'first-page': 'Unit 2.9', 'article-title': 'Comparative protein structure modeling using MODELLER', 'author': 'Eswar N.', 'year': '2007', 'journal-title': 'Curr. Protoc. Protein Sci.'} / Curr. Protoc. Protein Sci. / Comparative protein structure modeling using MODELLER by Eswar N. (2007)
  19. 10.1110/ps.9.9.1753
  20. 10.1110/ps.072939707
  21. 10.1142/9781860949852_0003
  22. 10.1002/1097-0134(20001201)41:4<518::AID-PROT90>3.0.CO;2-6
  23. 10.1093/nar/gki327
  24. 10.1016/0022-2836(91)90027-4
  25. 10.1110/ps.4820102
  26. {'key': 'e_1_2_6_27_1', 'volume-title': 'Advances in kernel methods: Support vector learning', 'author': 'Joachims T.', 'year': '1999'} / Advances in kernel methods: Support vector learning by Joachims T. (1999)
  27. 10.1006/jmbi.1999.3091
  28. 10.1002/bip.360221211
  29. 10.1006/jmbi.1999.2685
  30. 10.1016/S0959-440X(00)00063-4
  31. 10.1016/0022-2836(71)90324-X
  32. 10.1016/j.jmb.2007.11.033
  33. 10.1093/protein/gzj005
  34. 10.1021/ci600485s
  35. 10.1146/annurev.biophys.29.1.291
  36. 10.1110/ps.03379804
  37. 10.1186/1471-2105-8-345
  38. 10.1093/bioinformatics/btn014
  39. 10.1093/bioinformatics/btg097
  40. 10.1006/jmbi.1996.0868
  41. 10.1006/jmbi.1998.1665
  42. 10.1110/ps.072895107
  43. 10.1002/pro.110430
  44. 10.1177/0272989X9801800118
  45. 10.1006/jmbi.1996.0114
  46. 10.1006/jmbi.1996.0256
  47. 10.1006/jmbi.1996.0809
  48. 10.1093/bioinformatics/bti540
  49. 10.1093/nar/gkj059
  50. 10.1002/prot.21809
  51. 10.1002/prot.20835
  52. 10.1093/protein/12.2.85
  53. 10.1006/jmbi.1993.1626
  54. 10.1110/ps.9.7.1399
  55. 10.1038/80776
  56. 10.1002/(SICI)1097-0134(20000701)40:1<6::AID-PROT30>3.0.CO;2-7
  57. 10.1002/jcc.10124
  58. 10.1110/ps.062416606
  59. 10.1016/j.cplett.2005.02.029
  60. 10.1073/pnas.95.19.11158
  61. 10.1093/bioinformatics/16.9.776
  62. 10.1002/prot.340170404
  63. 10.1016/0022-2836(81)90087-5
  64. 10.1021/ci049924m
  65. 10.1002/prot.10015
  66. 10.1002/prot.10454
  67. 10.1110/ps.0236803
  68. 10.1110/ps.051799606
  69. 10.1038/nsmb885
  70. 10.1002/prot.20264
  71. 10.1110/ps.0217002
Dates
Type When
Created 16 years, 10 months ago (Oct. 1, 2008, 10:01 p.m.)
Deposited 1 year, 11 months ago (Sept. 28, 2023, 9:51 a.m.)
Indexed 3 days, 16 hours ago (Aug. 26, 2025, 3:04 a.m.)
Issued 16 years, 9 months ago (Nov. 1, 2008)
Published 16 years, 9 months ago (Nov. 1, 2008)
Published Online 16 years, 7 months ago (Jan. 2, 2009)
Published Print 16 years, 9 months ago (Nov. 1, 2008)
Funders 0

None

@article{Eramian_2008, title={How well can the accuracy of comparative protein structure models be predicted?}, volume={17}, ISSN={1469-896X}, url={http://dx.doi.org/10.1110/ps.036061.108}, DOI={10.1110/ps.036061.108}, number={11}, journal={Protein Science}, publisher={Wiley}, author={Eramian, David and Eswar, Narayanan and Shen, Min‐Yi and Sali, Andrej}, year={2008}, month=nov, pages={1881–1893} }