Abstract
AbstractThe final, structure‐determining step in the folding of membrane proteins involves the coalescence of preformed transmembrane helices to form the native tertiary structure. Here, we review recent studies on small peptide and protein systems that are providing quantitative data on the interactions that drive this process. Gel electrophoresis, analytical ultracentrifugation, and fluorescence resonance energy transfer (FRET) are useful methods for examining the assembly of homo‐oligomeric transmembrane helical proteins. These methods have been used to study the assembly of the M2 proton channel from influenza A virus, glycophorin, phospholamban, and several designed membrane proteins—all of which have a single transmembrane helix that is sufficient for association into a transmembrane helical bundle. These systems are being studied to determine the relative thermodynamic contributions of van der Waals interactions, conformational entropy, and polar interactions in the stabilization of membrane proteins. Although the database of thermodynamic information is not yet large, a few generalities are beginning to emerge concerning the energetic differences between membrane and water‐soluble proteins: the packing of apolar side chains in the interior of helical membrane proteins plays a smaller, but nevertheless significant, role in stabilizing their structure. Polar, hydrogen‐bonded interactions occur less frequently, but, nevertheless, they often provide a strong driving force for folding helix–helix pairs in membrane proteins. These studies are laying the groundwork for the design of sequence motifs that dictate the association of membrane helices.
References
187
Referenced
134
10.1021/bi020486r
10.1006/jmbi.2001.4908
10.1002/prot.10071
10.1038/nsb0295-154
10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.0.CO;2-B
10.1021/bi002829w
10.1002/j.1460-2075.1994.tb06801.x
10.1006/jmbi.1995.0263
10.1007/s002329900172
10.1016/0958-1669(94)90048-5
10.1002/(SICI)1097-0282(1998)47:1<31::AID-BIP5>3.0.CO;2-Y
10.1021/cr0000473
10.1073/pnas.85.15.5394
10.1016/0092-8674(86)90779-8
10.1006/viro.1998.9552
10.1074/jbc.272.4.2031
10.1016/S0021-9258(19)84957-8
/ J. Biol. Chem. / Synthetic peptides mimic the assembly of transmembrane glycoproteins by Bormann B.‐J. (1989)10.1006/jmbi.1997.1279
10.1038/72454
10.1016/S0959-440X(00)00223-2
10.1002/pro.5560070423
10.1002/(SICI)1097-0134(199610)26:2<134::AID-PROT3>3.0.CO;2-G
10.1126/science.270.5238.935
10.1016/S0006-3495(99)76956-0
10.1021/bi9909039
10.1021/bi011268l
10.1021/bi011269d
10.1021/bi011776v
10.1038/72440
10.1021/bi960080c
{'key': 'e_1_2_15_32_1', 'first-page': '171', 'article-title': 'Influenza‐virus M2 protein and hemagglutinin conformation changes during intracellular‐transport', 'volume': '39', 'author': 'Ciampor F.', 'year': '1995', 'journal-title': 'Acta Virol.'}
/ Acta Virol. / Influenza‐virus M2 protein and hemagglutinin conformation changes during intracellular‐transport by Ciampor F. (1995)10.1002/prot.340070102
10.1073/pnas.081069198
{'key': 'e_1_2_15_35_1', 'first-page': '277', 'article-title': 'CFTR degradation and aggregation', 'volume': '70', 'author': 'Corboy M.J.', 'year': '2002', 'journal-title': 'Methods Mol. Med.'}
/ Methods Mol. Med. / CFTR degradation and aggregation by Corboy M.J. (2002)10.1021/bi961955q
10.1006/jmbi.2001.5353
10.1073/pnas.90.24.11648
10.1034/j.1399-3011.1999.00118.x
10.1021/ja00311a076
10.1126/science.2464850
10.1146/annurev.biochem.68.1.779
10.1002/pro.5560041101
10.1016/0042-6822(92)91239-Q
10.1006/jmbi.1993.1170
10.1073/pnas.97.11.5796
10.1021/bi0107694
10.1016/0092-8674(81)90136-7
10.1006/jmbi.1999.3126
10.1016/S0022-2836(02)00590-9
10.1016/S0076-6879(00)23361-2
10.1002/prot.1151
10.1073/pnas.251367498
10.1006/jmbi.1997.1236
10.1016/S1359-0278(98)00061-3
10.1016/S0006-3495(00)76572-6
10.1021/bi0000972
10.1016/S0021-9258(18)51579-9
/ J. Biol. Chem. / Expression and site‐specific mutagenesis of phospholamban. Studies of residues involved in phosphorylation and pentamer formation by Fujii J. (1989)10.1073/pnas.93.22.12155
10.1021/bi9707584
10.1038/nsb1296-1002
10.1038/nsb0696-510
10.1038/nsb1296-1011
10.1073/pnas.98.3.880
10.1016/S0006-3495(02)73930-1
10.1126/science.8248779
10.1038/371080a0
10.1002/j.1460-2075.1985.tb04038.x
10.1074/jbc.M102495200
10.1002/pro.5560030206
10.1021/bi9605191
10.1139/o96-015
10.1021/bi011267t
10.1016/0042-6822(91)90115-R
10.1128/jvi.69.2.1219-1225.1995
/ J. Virology / Analysis of the posttranslational modifications of the influenza‐virus M(2) protein by Holsinger L.J. (1995)10.1016/S0065-3233(08)60331-9
10.1016/S0969-2126(96)00085-8
10.1016/S0959-440X(98)80158-9
10.1016/S0006-3495(99)77009-8
10.1021/bi980642n
10.1021/bi011016k
10.1021/bi0200763
10.1021/bi990720m
10.1016/S0006-3495(97)78279-1
10.1006/jmbi.1998.2512
10.1111/j.1432-1033.1997.00540.x
10.1074/jbc.M910092199
10.1006/viro.1997.8451
10.1006/jmbi.1993.1066
10.1074/jbc.273.35.22453
10.1002/(SICI)1097-0134(19980501)31:2<150::AID-PROT5>3.0.CO;2-Q
10.1006/jmbi.1996.0595
10.1021/bi963095j
{'key': 'e_1_2_15_94_1', 'first-page': '90', 'volume-title': 'Analytical ultracentrifugation in biochemistry and polymer science', 'author': 'Laue T.', 'year': '1992'}
/ Analytical ultracentrifugation in biochemistry and polymer science by Laue T. (1992)10.1126/science.2453923
10.1007/978-1-4614-7515-6_15
10.1017/S0033583500004522
10.1016/S0021-9258(18)42569-0
/ J. Biol. Chem. / Glycophorin A dimerization is driven by specific interactions between transmembrane α helices by Lemmon M.A. (1991)10.1021/bi00166a002
10.1038/nsb0394-157
10.1021/bi0026573
10.1021/bi9801053
10.1016/S0006-3495(99)77411-4
10.1073/pnas.221463098
10.1002/(SICI)1097-0282(1998)47:1<41::AID-BIP6>3.0.CO;2-X
10.1074/jbc.273.37.23645
10.1016/S0021-9258(18)34529-0
/ J. Biol. Chem. / Denaturation and renaturation of bacteriorhodopsin by London E. (1982)10.1074/jbc.M100600200
10.1016/S0006-3495(96)79735-7
10.1126/science.276.5309.131
10.1126/science.274.5288.761
10.1021/bi010642e
10.1002/pro.5560050712
10.1016/0958-1669(95)80066-2
10.1073/pnas.94.7.2833
10.1021/bi9707180
10.1006/jmbi.2001.4900
10.1021/bi981269m
10.1006/geno.1997.4967
10.1126/science.273.5276.810
10.1021/bi0028441
10.1126/science.1948029
10.1016/0022-2836(92)90121-Y
10.1096/fasebj.10.1.8566551
10.1110/ps.52101
10.1021/bi00082a007
10.1021/bi00189a025
10.1073/pnas.94.21.11301
10.1021/bi00469a001
10.1146/annurev.biochem.69.1.881
10.1002/j.1460-2075.1986.tb04603.x
10.1021/bi981795d
10.1002/(SICI)1097-0134(20000201)38:2<121::AID-PROT1>3.0.CO;2-M
10.1126/science.2667138
10.1073/pnas.96.3.863
10.1006/jmbi.1999.3489
10.1073/pnas.94.10.5000
10.1021/bi001799u
10.1073/pnas.92.10.4577
10.1016/S1359-0278(98)00011-X
10.1016/S0014-5793(96)01146-5
10.1006/jmbi.1999.3488
10.1073/pnas.161280798
10.1002/prot.340150302
10.1016/S0968-0004(00)89101-X
10.1073/pnas.101130498
10.1146/annurev.biophys.31.101101.140922
10.1074/jbc.271.10.5941
10.1038/nsb0396-252
10.1021/bi010357v
10.1016/S0006-3495(02)75590-2
10.1021/bi951087h
10.1073/pnas.92.2.452
10.1016/S0014-5793(00)01429-0
10.1002/(SICI)1097-0134(19990701)36:1<135::AID-PROT11>3.0.CO;2-I
10.1038/87569
10.1016/0304-4157(76)90009-5
10.1021/bi00708a021
10.1074/jbc.M206582200
10.1016/S0076-6879(73)27017-9
10.1038/89631
10.1021/bi025695q
10.1021/bi00615a025
10.1006/jmbi.2000.3885
10.1016/S0006-3495(00)76547-7
10.1021/bi00166a003
10.1006/jmbi.2000.3866
10.1016/0022-2836(77)90042-0
10.1017/S0033583500003541
10.1002/pro.5560020306
10.1110/ps.8.11.2312
10.1074/jbc.M000723200
10.1110/ps.17901
10.1038/339230a0
10.1146/annurev.biophys.28.1.319
10.1083/jcb.145.3.481
{'key': 'e_1_2_15_177_1', 'first-page': '381', 'article-title': 'A protein sequence that can encode native structure by disfavoring alternate conformations', 'volume': '9', 'author': 'Wigley W.C.', 'year': '2002', 'journal-title': 'Nat. Struct. Biol.'}
/ Nat. Struct. Biol. / A protein sequence that can encode native structure by disfavoring alternate conformations by Wigley W.C. (2002)10.1021/bi992746j
10.1016/S0006-3495(79)85171-1
10.1055/s-0037-1616229
10.1002/pro.5560070117
10.1021/bi011161y
10.1016/S0014-5793(98)00988-0
10.1016/S0014-5793(00)01522-2
10.1038/81919
10.1073/pnas.041593698
10.1110/ps.34201
10.1006/jmbi.2000.3936
Dates
Type | When |
---|---|
Created | 22 years, 5 months ago (March 20, 2003, 3:05 p.m.) |
Deposited | 1 year, 10 months ago (Oct. 9, 2023, 11:12 p.m.) |
Indexed | 1 week, 1 day ago (Aug. 21, 2025, 2:03 p.m.) |
Issued | 22 years, 4 months ago (April 1, 2003) |
Published | 22 years, 4 months ago (April 1, 2003) |
Published Online | 16 years, 7 months ago (Jan. 1, 2009) |
Published Print | 22 years, 4 months ago (April 1, 2003) |
@article{DeGrado_2003, title={How do helix–helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo‐oligomeric helical bundles}, volume={12}, ISSN={1469-896X}, url={http://dx.doi.org/10.1110/ps.0236503}, DOI={10.1110/ps.0236503}, number={4}, journal={Protein Science}, publisher={Wiley}, author={DeGrado, William F. and Gratkowski, Holly and Lear, James D.}, year={2003}, month=apr, pages={647–665} }