Crossref journal-article
Emerald
International Journal of Numerical Methods for Heat & Fluid Flow (140)
Abstract

We report on the progress in the development and application of a coupled boundary element/finite volume method temperature‐forward/flux‐back algorithm developed to solve conjugate heat transfer arising in 3D film‐cooled turbine blades. We adopt a loosely coupled strategy where each set of field equations is solved to provide boundary conditions for the other. Iteration is carried out until interfacial continuity of temperature and heat flux is enforced. The NASA‐Glenn explicit finite volume Navier‐Stokes code Glenn‐HT is coupled to a 3D BEM steady‐state heat conduction solver. Results from a CHT simulation of a 3D film‐cooled blade section are compared with those obtained from the standard two temperature model, revealing that a significant difference in the level and distribution of metal temperatures is found between the two. Finally, current developments of an iterative strategy accommodating large numbers of unknowns by a domain decomposition approach is presented. An iterative scheme is developed along with a physically‐based initial guess and a coarse grid solution to provide a good starting point for the iteration. Results from a 3D simulation show the process that converges efficiently and offers substantial computational and storage savings.

Bibliography

Kassab, A., Divo, E., Heidmann, J., Steinthorsson, E., & Rodriguez, F. (2003). BEM/FVM conjugate heat transfer analysis of a three‐dimensional film cooled turbine blade. International Journal of Numerical Methods for Heat & Fluid Flow, 13(5), 581–610.

Authors 5
  1. A. Kassab (first)
  2. E. Divo (additional)
  3. J. Heidmann (additional)
  4. E. Steinthorsson (additional)
  5. F. Rodriguez (additional)
References 57 Referenced 55
  1. Ameri, A.A., Steinthorsson, E. and Rigby, D.L. (1997), Effect of squealer tip on rotor heat transfer and efficiency, ASME Paper 97‐GT‐128. (10.1115/97-GT-128)
  2. Azevedo, J.P.S. and Wrobel, L.C. (1988), “Non‐linear heat conduction in composite bodies: a boundary element formulation”, International Journal for Numerical Methods in Engineering, Vol. 26, pp. 19–38. (10.1002/nme.1620260103)
  3. Banerjee, P.K. (1994), Boundary Element Method, McGraw‐Hill, NY, USA.
  4. Bialecki, R. and Nhalik, R. (1989), “Solving nonlinear steady state potential problems in inhomogeneous bodies using the boundary element method”, Numerical Heat Transfer, Part B, Vol. 15, pp. 79–96. (10.1080/10407798908944929)
  5. Bialecki, R.A., Merkel, M., Mews, H. and Kuhn, G. (1996), “In‐and out‐of‐core BEM equation solver with parallel and nonlinear options”, International Journal for numerical Methods in Engineering, Vol. 39, pp. 4215–42. (10.1002/(SICI)1097-0207(19961230)39:24<4215::AID-NME59>3.0.CO;2-M)
  6. Bialecki, R., Ostrowski, Z., Kassab, A., Qi, Y. and Sciubba, E. (2001), Coupling finite element and boundary element solutions, Proc. of the 2001 European Conference on Computational Mechanics, 26‐29 June, 2001, Cracow, Poland.
  7. Bohn, D.E., Becker, V.J. and Rungen, A.U. (1997), Experimental and numerical conjugate flow and heat transfer investigation of a shower‐head cooled turbine guide vane, ASME Paper 97‐GT‐15. (10.1115/97-GT-015)
  8. Bohn, D., Becker, V., Kusterer, K., Otsuki, Y., Sugimoto, T. and Tanaka, R. (1999), 3‐D internal conjugate calculations of a convectively cooled turbine blade with serpentine‐shaped ribbed channels, IGTI Paper 99‐GT‐220. (10.1115/99-GT-220)
  9. Brebbia, C.A. and Dominguez, J. (1989), Boundary Elements: An Introductory Course, Computational Mechanics Pub., Southampton and McGraw‐Hill, NY, USA.
  10. Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C. (1984), Boundary Element Techniques, Springer‐Verlag, Berlin. (10.1007/978-3-642-48860-3)
  11. Brown, S.A. (1997), Displacement extrapolations for CFD+CSM aeroelastic analysis, AIAA Paper 97‐1090 (10.2514/6.1997-1090)
  12. Bucher, H. and Wrobel, L.C. (2000), “A novel approach to applying wavelet transforms in boundary element method”, in Denda, M. , Aliabadi, M.H. and Charafi, A. (Eds), Advances in Boundary Element Techniques, II, Hogaar Press, Switzerland, pp. 3–11.
  13. Chima, R.V. (1996), A k‐ω turbulence model for quasi‐dimensional turbomachinery flows, NASA TM‐107051. (10.2514/6.1996-248)
  14. Comini, G., Saro, O. and Manzan, M. (1993), “A physical approach to finite element modeling of coupled conduction and convection”, Numerical Heat Transfer, Part B, Vol. 24, pp. 243–61. (10.1080/10407799308955892)
  15. Divo, E.A., Kassab, A.J. and Rodriguez, F. (2003), Domain decomposition for 3D boundary elements in non‐linear heat conduction, ASME Paper HT2003‐40553. (10.1115/HT2003-47553)
  16. Dowell, E. and Hall, K.C. (2001), “Modeling of fluid structure interaction”, Annual Review of Fluid Mechanics, Vol. 33, pp. 445–90. (10.1146/annurev.fluid.33.1.445)
  17. Greengard, L. and Strain, J. (1990), “A fast algorithm for the evaluation of heat potentials”, Communications in Pure and Applied Mathematics, Vol. 43, pp. 949–63. (10.1002/cpa.3160430802)
  18. Hackbush, W. and Nowak, Z.P. (1989), “On the fast multiplication in the boundary element method by panel clustering”, Numerische Mathematik, Vol. 54, pp. 463–91. (10.1007/BF01396324)
  19. Hahn, Z., Dennis, B. and Dulikravich, G. (2000), Simultaneous prediction of external flow‐field and temperature in internally cooled 3‐D turbine blode material, IGTI Paper 2000‐GT‐253.
  20. Hassan, B., Kuntz, D. and Potter, D.L. (1998), Coupled fluid/thermal prediction of ablating hypersonic vehicles, AIAA Paper 98‐0168. (10.2514/6.1998-168)
  21. He, M., Bishop, P., Kassab, A.J. and Minardi, A. (1995a), “A coupled FDM/BEM solution for the conjugate heat transfer problem”, Numerical Heat Transfer, Part B: Fundamentals, Vol. 28 No. 2, pp. 139–54. (10.1080/10407799508928826)
  22. He, M., Kassab, A.J., Bishop, P.J. and Minardi, A. (1995b), “A coupled FDM/BEM iterative solution for the conjugate heat transfer problem in thick‐walled channels: constant temperature imposed at the outer channel wall”, Engineering Analysis, Vol. 15 No. 1, pp. 43–50. (10.1016/0955-7997(95)00007-B)
  23. Heidmann, J., Rigby, D. and Ameri, A. (2002), “A three‐dimensional coupled external/internal simulation of a film‐cooled turbine vane”, ASME Journal of Turbomachinery, Vol. 122, pp. 348–59. (10.1115/1.555450)
  24. Heidmann, J.D., Kassab, A.J., Divo, E.A., Rodriguez, F. and Steinthorsson, E. (2003), Conjugate heat transfer effects on a realistic film‐cooled turbine vane, ASME Paper GT2003‐G38553. (10.1115/GT2003-38553)
  25. Jameson, A., Schmidt, W. and Turkel, E. (1981), Numerical simulation of the Euler equations by the finite volume methods using Runge‐Kutta time stepping schemes, AIAA Paper 81‐1259. (10.2514/6.1981-1259)
  26. Kane, J. (1994), Boundary Element Analysis in Engineering and Continuum Mechanics, Prentice‐Hall, Englewood Cliffs, New Jersey.
  27. Kane, J.H., Kashava‐Kumar, B.L. and Saigal, S. (1990), “An arbitrary condensing, noncondensing strategy for large scale, multi‐zone boundary element analysis”, Computer Methods in Applied Mechanics and Engineering, Vol. 79, pp. 219–44. (10.1016/0045-7825(90)90133-7)
  28. Kao, K.H. and Liou, M.S. (1997), “Application of chimera/unstructured hybrid grids for conjugate heat transfer”, AIAA Journal, Vol. 35 No. 9, pp. 1472–8. (10.2514/2.270)
  29. Kassab, A.J. and Aliabadi, M.H. (Eds) (2001), Advances in Boundary Elements: Coupled Field Problems, Computational Mechanics, Boston.
  30. Kassab, A.J. and Nordlund, R.S. (1994), “Addressing the corner problem in the BEM solution of heat conduction problems”, Communications in Numerical Methods in Engineering, Vol. 10, pp. 385–92. (10.1002/cnm.1640100504)
  31. Kassab, A.J. and Wrobel, L.C. (2000), “Boundary element methods in heat conduction”, in Mincowycz, W.J. and Sparrow, E.M. (Eds), Recent Advances in Numerical Heat Transfer, Chapter 5, Taylor and Francis, New York, Vol. 2, pp. 143–88.
  32. Kellogg, O.D. (1953), Foundations of Potential Theory, Dover, New York.
  33. Kontinos, D. (1997), “Coupled thermal analysis method with application to metallic thermal protection panels”, AIAA Journal of Thermophysics and Heat Transfer, Vol. 11 No. 2, pp. 173–81. (10.2514/2.6249)
  34. Li, H. and Kassab, A.J. (1994a), Numerical prediction of fluid flow and heat transfer in turbine blades with internal cooling, AIAA/ASME Paper 94‐2933. (10.2514/6.1994-2933)
  35. Li, H. and Kassab, A.J. (1994b), A coupled FVM/BEM solution to conjugate heat transfer in turbine blades, AIAA Paper 94‐1981. (10.2514/6.1994-1981)
  36. Liggett, J.A. and Liu, P.L.‐F. (1983), The Boundary Integral Equation Method for Porous Media Flow, Allen and Unwin, Boston.
  37. Menter, F.R. (1993), Zonal two‐equation k‐ω turbulence models for aerodynamic flows, AIAA Paper 93‐2906. (10.2514/6.1993-2906)
  38. Morse, P.M. and Feshbach, H. (1953), Methods of Theoretical Physics, McGraw‐Hill, NY, USA.
  39. Partridge, P.W., Brebbia, C.A. and Wrobel, L.C. (1992), The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton. (10.1007/978-94-011-3690-7)
  40. Patankar, S.V. (1978), A numerical method for conduction in composite materials, flow in irregular geometries and conjugate heat transfer, Proc. 6th. Int. Heat Transfer Conf., NRC Canada, and Hemisphere Pub. Co., New York, Vol. 3, pp. 297‐302 (10.1615/IHTC6.430)
  41. Program Development Corporation (1997), GridPro™/az3000‐User's guide and reference manual, White Plains, New York.
  42. Rahaim, C., Cavalleri, R.J. and Kassab, A.J. (1997), Computational code for conjugate heat transfer problems an experimental validation effort, AIAA Paper 97‐2487. (10.2514/6.1997-2487)
  43. Rahaim, C.P., Kassab, A.J. and Cavalleri, R. (2000), “A coupled dual reciprocity boundary element/finite volume method for transient conjugate heat transfer”, AIAA Journal of Thermophysics and Heat Transfer, Vol. 14 No. 1, pp. 27–38. (10.2514/2.6506)
  44. Rigby, D.L., Ameri, A.A. and Steinthorsson, E. (1997), Numerical prediction of heat transfer in a channel with ribs and bleed, ASME Paper 97‐GT‐431. (10.1115/97-GT-431)
  45. Schlichting, H. (1979), Boundary Layer Theory, 7th edition, McGraw‐Hill, NY, USA, pp. 312–13.
  46. Shyy, W. and Burke, J. (1994), “Study of iterative characteristics of convective diffusive and conjugate heat transfer problems”, Numerical Heat Transfer, Part B, Vol. 26, pp. 21–37. (10.1080/10407799408914914)
  47. Steinthorsson, E., Ameri, A. and Rigby, D. (n.d.), LeRC‐HT‐The NASA Lewis Research Center General Multi‐Block Navier‐Stokes Convective Heat Transfer Code, (unpublished).
  48. Steinthorsson, E., Liou, M.‐S. and Povinelli L.A. (1993), Development of an explicit multi‐block/multigrid flow solver for viscous flows in complex geometries, AIAA Paper 93‐2380. (10.2514/6.1993-2380)
  49. Tayala, S.S., Rajadas, J.N. and Chattopadyay, A. (2000), “Multidisciplinary optimization for gas turbine airfoil design”, Inverse Problems in Engineering, Vol. 8 No. 3, pp. 283–307. (10.1080/174159700088027731)
  50. Turkel, E. (1987), “Preconditioned methods for solving the incompressible and low‐speed compressible equations”, Journal of Computational Physics, Vol. 72 No. 2, pp. 277–98. (10.1016/0021-9991(87)90084-2)
  51. Turkel, E. (1993), “Review of preconditioning methods for fluid dynamics”, Applied Numerical Mathematics, Vol. 12, pp. 257–84. (10.1016/0168-9274(93)90122-8)
  52. Wilcox, D.C. (1993), Turbulence Modeling for CFD, DCW Industries, La Canada, California.
  53. Wilcox, D.C. (1994), “Simulation of transition with a two‐equation turbulence model”, AIAA Journal, Vol. 32 No. 2, pp. 247–55. (10.2514/3.59994)
  54. Ye, R., Kassab, A.J. and Li, H.J. (1998), FVM/BEM approach for the solution of nonlinear conjugate heat transfer problems, in Kassab, A.J., Brebbia, C.A. and Chopra, M.B. (Eds) Proc. BEM 20, 19‐21 August, Orlando, Florida, pp. 679‐89.
  55. Abramowitz, M. and Stegun, I. (1965), Handbook of Mathematical Functions, Dover Publications, New York.
  56. Divo, E., Rodriguez, F. and Kassab, A.J. (n.d.), A strategy for linear and nonlinear three dimensional BEM heat conduction models, Numerical Heat Transfer (in review).
  57. Ralston, A. and Rabinowitz, P. (1978), A First Course in Numerical Analysis, McGraw‐Hill, NY, USA.
Dates
Type When
Created 22 years, 2 months ago (June 10, 2003, 2:55 p.m.)
Deposited 3 weeks, 6 days ago (July 24, 2025, 8:16 p.m.)
Indexed 2 weeks, 4 days ago (Aug. 2, 2025, 2:02 p.m.)
Issued 22 years ago (Aug. 1, 2003)
Published 22 years ago (Aug. 1, 2003)
Published Print 22 years ago (Aug. 1, 2003)
Funders 0

None

@article{Kassab_2003, title={BEM/FVM conjugate heat transfer analysis of a three‐dimensional film cooled turbine blade}, volume={13}, ISSN={0961-5539}, url={http://dx.doi.org/10.1108/09615530310482463}, DOI={10.1108/09615530310482463}, number={5}, journal={International Journal of Numerical Methods for Heat &amp; Fluid Flow}, publisher={Emerald}, author={Kassab, A. and Divo, E. and Heidmann, J. and Steinthorsson, E. and Rodriguez, F.}, year={2003}, month=aug, pages={581–610} }