Crossref journal-article
Oxford University Press (OUP)
Plant Physiology (286)
Abstract

Abstract Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2,000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.

Bibliography

von Roepenack-Lahaye, E., Degenkolb, T., Zerjeski, M., Franz, M., Roth, U., Wessjohann, L., Schmidt, J., Scheel, D., & Clemens, S. (2004). Profiling of Arabidopsis Secondary Metabolites by Capillary Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Plant Physiology, 134(2), 548–559.

Authors 9
  1. Edda von Roepenack-Lahaye (first)
  2. Thomas Degenkolb (additional)
  3. Michael Zerjeski (additional)
  4. Mathias Franz (additional)
  5. Udo Roth (additional)
  6. Ludger Wessjohann (additional)
  7. Jürgen Schmidt (additional)
  8. Dierk Scheel (additional)
  9. Stephan Clemens (additional)
References 31 Referenced 167
  1. Bjergegaard C, Buskov S, Sørensen H, Sørensen JC, Sørensen M, Sørensen  S (2000) Reactions between glucosinolate products and thiol groups in food components. Czech J Food Sci  18  :  193–195
  2. Chaney RL (1988) Plants can utilize iron from Fe-N, N′-di-(2-hydroxybenzoyl)-ethylenediamine-N, N′-diacetic acid, a ferric chelate with 106 greater formation constant than FE-EDDHA. J Plant Nutr  11  :  1033–1050 (10.1080/01904168809363867)
  3. Chen F, Tholl D, D'Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell  15  :  1–14 (10.1105/tpc.007989)
  4. Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom  36  :  849–865 (10.1002/jms.207)
  5. De Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom  31  :  129–137 (10.1002/(SICI)1096-9888(199602)31:2<129::AID-JMS305>3.0.CO;2-T)
  6. Dixon RA (2001) Natural products and plant disease resistance. Nature  411  :  843–847 (10.1038/35081178)
  7. Fiehn O (2002) Metabolomics: the link between genotypes and phenotypes. Plant Mol Biol  48  :  155–171 (10.1007/978-94-010-0448-0_11)
  8. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol  18  :  1157–1161 (10.1038/81137)
  9. Graham TL (1991) A rapid, high resolution high performance liquid chromatography profiling procedure for plant and microbial aromatic secondary metabolites. Plant Physiol  95  :  584–593 (10.1104/pp.95.2.584)
  10. Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens  H, Logemann E, Nürnberger T, Schmelzer E, Somssich IE et al. (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci USA  100  :  14569–14576 (10.1073/pnas.0831246100)
  11. Huhman DV, Sumner LW (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry  59  :  347–360 (10.1016/S0031-9422(01)00432-0)
  12. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C,  Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis.  EMBO J  19  :  6150–6161 (10.1093/emboj/19.22.6150)
  13. Kawabata J, Fukushi Y, Hayashi R, Suzuki K, Mishima Y, Yamane A,  Mizutani J (1989) 8-Methylsulfinyloctyl isothiocyanate as an allelochemical candidate from Rorippa sylvestris Besser. Agric Biol Chem  53  :  3361–3362 (10.1271/bbb1961.53.3361)
  14. Kjær A, Christensen B (1958) Isothiocyanates XXX: glucohirsutin, a new naturally occurring glucoside furnishing (-)-8-methylsulfinyloctyl isothiocyanate on enzymatic hydrolysis. Acta Chem Scand  12  :  833–838 (10.3891/acta.chem.scand.12-0833)
  15. Kjær A, Ohashi M, Wilson JM, Djerassi C (1963) Mass spectra of isothiocyanates. Acta Chem Scand  17  :  2143–2154 (10.3891/acta.chem.scand.17-2143)
  16. Kutchan TM (2001) Ecological arsenal and developmental dispatcher: the paradigm of secondary metabolism. Plant Physiol  125  :  58–60 (10.1104/pp.125.1.58)
  17. Lange BM, Ketchum RE, Croteau RB (2001) Isoprenoid biosynthesis: metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis. Plant Physiol  127  :  305–314 (10.1104/pp.127.1.305)
  18. Niessen WMA (1999). Liquid Chromatography-Mass Spectrometry, Chapter 14: Natural Products and Endogenous Compounds, Ed 2. Marcel Dekker, New York, pp 465–500
  19. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science  233  :  977–980 (10.1126/science.3738520)
  20. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci  5  :  439–445 (10.1016/S1360-1385(00)01741-6)
  21. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L,  Fernie A (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell  13  :  11–29 (10.1105/tpc.13.1.11)
  22. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J  23  :  131–142 (10.1046/j.1365-313x.2000.00774.x)
  23. Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel  FM, Goodman HW (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J  8  :  659–671 (10.1046/j.1365-313X.1995.08050659.x)
  24. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem  74  :  2233–2239 (10.1021/ac020064n)
  25. Spencer GF, Daxenbichler M (1980) Gas chromatography-mass spectrometry of nitriles, isothiocyanates, oxazoloidinethiones derived from cruciferous glucosinolates. J Sci Food Agric  31  :  359–367 (10.1002/jsfa.2740310406)
  26. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry  62  :  817–836 (10.1016/S0031-9422(02)00708-2)
  27. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.  Nature  408  :  796–815 (10.1038/35048692)
  28. Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem  301  :  298–307 (10.1006/abio.2001.5513)
  29. Trethewey RN, Krotzky AJ, Willmitzer L (1999) Metabolic profiling: a Rosetta Stone for genomics? Curr Opin Plant Biol  2  :  83–85 (10.1016/S1369-5266(99)80017-X)
  30. Veit M, Pauli GF (1999) Major flavonoids from Arabidopsis thaliana leaves. J Nat Prod  62  :  1301–1303 (10.1021/np990080o)
  31. Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry  62  :  887–900 (10.1016/S0031-9422(02)00703-3)
Dates
Type When
Created 21 years, 6 months ago (Feb. 13, 2004, 3:43 p.m.)
Deposited 4 years, 2 months ago (June 27, 2021, 6:58 a.m.)
Indexed 3 months, 3 weeks ago (May 15, 2025, 5:03 p.m.)
Issued 21 years, 7 months ago (Feb. 1, 2004)
Published 21 years, 7 months ago (Feb. 1, 2004)
Published Online 21 years, 6 months ago (Feb. 13, 2004)
Published Print 21 years, 7 months ago (Feb. 1, 2004)
Funders 0

None

@article{von_Roepenack_Lahaye_2004, title={Profiling of Arabidopsis Secondary Metabolites by Capillary Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry}, volume={134}, ISSN={0032-0889}, url={http://dx.doi.org/10.1104/pp.103.032714}, DOI={10.1104/pp.103.032714}, number={2}, journal={Plant Physiology}, publisher={Oxford University Press (OUP)}, author={von Roepenack-Lahaye, Edda and Degenkolb, Thomas and Zerjeski, Michael and Franz, Mathias and Roth, Udo and Wessjohann, Ludger and Schmidt, Jürgen and Scheel, Dierk and Clemens, Stephan}, year={2004}, month=feb, pages={548–559} }