Crossref journal-article
American Physical Society (APS)
Physical Review B (16)
Bibliography

Gong, S., Xie, T., Zhu, T., Wang, S., Fadel, E. R., Li, Y., & Grossman, J. C. (2019). Predicting charge density distribution of materials using a local-environment-based graph convolutional network. Physical Review B, 100(18).

Dates
Type When
Created 5 years, 9 months ago (Nov. 7, 2019, 10:01 a.m.)
Deposited 4 years, 6 months ago (Jan. 27, 2021, 8:01 p.m.)
Indexed 2 months, 4 weeks ago (May 23, 2025, 3:24 p.m.)
Issued 5 years, 9 months ago (Nov. 7, 2019)
Published 5 years, 9 months ago (Nov. 7, 2019)
Published Online 5 years, 9 months ago (Nov. 7, 2019)
Funders 2
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. DE-AC02-05CH11231
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. ACI-1053575

@article{Gong_2019, title={Predicting charge density distribution of materials using a local-environment-based graph convolutional network}, volume={100}, ISSN={2469-9969}, url={http://dx.doi.org/10.1103/physrevb.100.184103}, DOI={10.1103/physrevb.100.184103}, number={18}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Gong, Sheng and Xie, Tian and Zhu, Taishan and Wang, Shuo and Fadel, Eric R. and Li, Yawei and Grossman, Jeffrey C.}, year={2019}, month=nov }