Crossref journal-article
Cold Spring Harbor Laboratory
Genome Research (246)
Abstract

Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored ∼3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last ∼1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron–exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

Bibliography

Carmel, L., Wolf, Y. I., Rogozin, I. B., & Koonin, E. V. (2007). Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Research, 17(7), 1034–1044.

Authors 4
  1. Liran Carmel (first)
  2. Yuri I. Wolf (additional)
  3. Igor B. Rogozin (additional)
  4. Eugene V. Koonin (additional)
References 64 Referenced 139
  1. 10.1038/387489a0
  2. 10.1093/nar/gkh686
  3. 10.1126/science.1085544
  4. 10.1186/1471-2148-2-7
  5. 10.1007/11554714_4
  6. 10.1101/gr.5978207
  7. 10.1101/gr.2639304
  8. 10.1073/pnas.0308192101
  9. 10.1093/molbev/msi091
  10. 10.1101/gr.5703406
  11. 10.1007/11554714_5
  12. 10.1111/j.2517-6161.1977.tb01600.x / J. R. Stat. Soc. Ser. B Methodol. / Maximum likelihood from incomplete data via the EM algorithm by Dempster, (1977)
  13. 10.1093/nar/27.15.3219
  14. 10.1016/S0022-5193(05)80388-1
  15. 10.1002/j.1460-2075.1989.tb03609.x / EMBO J. / Evidence that introns arose at proto-splice sites by Dibb, (1989)
  16. 10.1038/272581a0
  17. 10.1093/nar/gkh340
  18. 10.1073/pnas.242624899
  19. 10.1101/gr.1029803
  20. Felsenstein, J. (2004) Inferring phylogenies (Sinauer Associates, Sunderland, MA).
  21. 10.1089/10665270252935494
  22. 10.1038/271501a0
  23. 10.1038/nrg929
  24. 10.1186/1471-2148-1-4
  25. 10.1093/bioinformatics/bti177
  26. 10.1016/j.tig.2005.10.006
  27. 10.1093/molbev/msl017
  28. 10.1073/pnas.122570299
  29. 10.1016/S0959-437X(98)80031-2
  30. Long, M. De Souza, S.J. (1998) in Advances in genome biology: Genes and genomes, Intron–exon structures: From molecular to population biology, ed Verma, R.S. (JIA Press, Greenwich, CT) Vol. 5A, pp 143–178. (10.1016/S1067-5701(98)80020-X)
  31. 10.1073/pnas.092595699
  32. 10.1093/molbev/msj050
  33. 10.1126/science.1089370
  34. 10.1016/S0959-437X(02)00360-X
  35. 10.1038/416499a
  36. 10.1038/nature04531
  37. 10.1016/0959-437X(94)90066-3
  38. 10.1126/science.1080559
  39. 10.1371/journal.pcbi.0010079
  40. 10.1371/journal.pbio.0020422
  41. 10.1073/pnas.042700299
  42. 10.1093/molbev/msh120
  43. 10.1126/science.1119089
  44. 10.1146/annurev.genet.40.110405.090625
  45. 10.1016/S0168-9525(00)02096-5
  46. 10.1016/S0960-9822(03)00558-X
  47. Rogozin, I.B. Babenko, V.N. Wolf, Y.I. Koonin, E.V. (2005a) in Parsimony, phylogeny, and genomics, Dollo parsimony and reconstruction of genome evolution, ed Albert, V.A. (Oxford University Press, Oxford), pp 190–200. (10.1093/acprof:oso/9780199297306.003.0011)
  48. 10.1093/bib/6.2.118
  49. 10.1073/pnas.0408355101
  50. 10.1073/pnas.0408274102
  51. 10.1073/pnas.0500383102
  52. 10.1038/nrg1807
  53. 10.1101/gr.4845406
  54. 10.1093/molbev/msl098
  55. 10.1093/molbev/msl159
  56. 10.1093/molbev/msh039 / Mol. Biol. Evol. / Phylogenetic estimation of context-dependent substitution rates by maximum likelihood by Siepel, (2004)
  57. 10.1038/419270a
  58. 10.1126/science.1071196
  59. 10.1016/j.gene.2004.05.027
  60. 10.1016/j.cub.2004.08.027
  61. 10.1186/1471-2105-4-41
  62. 10.1073/pnas.0407500102
  63. 10.1101/gr.1347404
  64. 10.1007/BF00160154
Dates
Type When
Created 18 years, 3 months ago (May 10, 2007, 8:56 p.m.)
Deposited 7 months, 2 weeks ago (Jan. 15, 2025, 11:12 p.m.)
Indexed 6 hours, 22 minutes ago (Sept. 1, 2025, 6:33 a.m.)
Issued 18 years, 3 months ago (May 10, 2007)
Published 18 years, 3 months ago (May 10, 2007)
Published Online 18 years, 3 months ago (May 10, 2007)
Published Print 18 years, 2 months ago (July 1, 2007)
Funders 0

None

@article{Carmel_2007, title={Three distinct modes of intron dynamics in the evolution of eukaryotes}, volume={17}, ISSN={1088-9051}, url={http://dx.doi.org/10.1101/gr.6438607}, DOI={10.1101/gr.6438607}, number={7}, journal={Genome Research}, publisher={Cold Spring Harbor Laboratory}, author={Carmel, Liran and Wolf, Yuri I. and Rogozin, Igor B. and Koonin, Eugene V.}, year={2007}, month=may, pages={1034–1044} }