Abstract
By comparing the gene order in the completely sequenced archaeal genomes complemented by sequence profile analysis, we predict the existence and protein composition of the archaeal counterpart of the eukaryotic exosome, a complex of RNAses, RNA-binding proteins, and helicases that mediates processing and 3′->5′ degradation of a variety of RNA species. The majority of the predicted archaeal exosome subunits are encoded in what appears to be a previously undetected superoperon. In Methanobacterium thermoautotrophicum, this predicted superoperon consists of 15 genes; in the Crenarchaea, Sulfolobus solfataricus andAeropyrum pernix, one and two of the genes from the superoperon, respectively, are relocated in the genome, whereas in other Euryarchaeota, the superoperon is split into a variable number of predicted operons and solitary genes. Methanococcus jannaschiipartially retains the superoperon, but lacks the three core exosome subunits, and in Halobacterium sp., the superoperon is divided into two predicted operons, with the same three exosome subunits missing. This suggests concerted gene loss and an alteration of the structure and function of the predicted exosome in theMethanococcus and Halobacterium lineages. Additional potential components of the exosome are encoded by partially conserved predicted small operons. Along with the orthologs of eukaryotic exosome subunits, namely an RNase PH and two RNA-binding proteins, the predicted archaeal exosomal superoperon also encodes orthologs of two protein subunits of RNase P. This suggests a functional and possibly a physical interaction between RNase P and the postulated archaeal exosome, a connection that has not been reported in eukaryotes. In a pattern of apparent gene loss complementary to that seen inMethanococcus and Halobacterium, Thermoplasma acidophilum lacks the RNase P subunits. Unexpectedly, the identified exosomal superoperon, in addition to the predicted exosome components, encodes the catalytic subunits of the archaeal proteasome, two ribosomal proteins and a DNA-directed RNA polymerase subunit. These observations suggest that in archaea, a tight functional coupling exists between translation, RNA processing and degradation, (apparently mediated by the predicted exosome) and protein degradation (mediated by the proteasome), and may have implications for cross-talk between these processes in eukaryotes.
References
59
Referenced
191
10.1016/S0968-0004(98)01298-5
10.1093/nar/25.17.3389
{'key': '2021111810452042000_11.2.240.3', 'first-page': '8', 'article-title': 'An evolutionary classification of the metallo-beta lactamase fold proteins.', 'volume': '1', 'author': 'Aravind', 'year': '1998', 'journal-title': 'In Silico Biol.'}
/ In Silico Biol. / An evolutionary classification of the metallo-beta lactamase fold proteins. by Aravind (1998)10.1101/gr.10.8.1074
10.1093/nar/27.23.4658
10.1101/gr.10.8.1172
10.1002/pro.5560070521
10.1093/nar/27.5.1223
10.1073/pnas.200346997
10.1016/S0092-8674(00)80929-0
10.1126/science.273.5278.1058
10.1139/g99-108
/ Genome / Gene content and organization of a 281-kbp contig from the genome of the extremely thermophilic archaeon, Sulfolobus solfataricus P2. by Charlebois (2000)10.1016/S0968-0004(98)01274-2
10.1016/S0966-842X(98)01432-2
10.1016/S0960-9822(98)70149-6
10.1074/jbc.274.32.22123
10.1128/MCB.19.8.5707
/ Mol. Cell. Biol. / The cleavage and polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylation. by Dickson (1999)10.1146/annurev.biochem.67.1.153
10.1038/76443
10.1128/MCB.16.10.5764
/ Mol. Cell. Biol. / Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. by Harris (1996){'key': '2021111810452042000_11.2.240.21', 'first-page': '345', 'article-title': 'Gene and context: Integrative approaches to genome analysis.', 'volume': '54', 'author': 'Huynen', 'year': '2000', 'journal-title': 'Adv. Prot. Chem.'}
/ Adv. Prot. Chem. / Gene and context: Integrative approaches to genome analysis. by Huynen (2000)10.1016/S0959-440X(00)00098-1
10.1093/oxfordjournals.molbev.a026114
{'key': '2021111810452042000_11.2.240.24', 'first-page': '1727', 'article-title': "L'Operon: Groupe de genes a expression coordonee par un operateur.", 'volume': '250', 'author': 'Jacob', 'year': '1960', 'journal-title': 'C.R. Seance Acad. Sci.'}
/ C.R. Seance Acad. Sci. / L'Operon: Groupe de genes a expression coordonee par un operateur. by Jacob (1960)10.1093/dnares/5.2.147
/ DNA Res. (supplement) / Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. by Kawarabayasi (1998)10.1093/dnares/6.2.83
10.1017/S135583829999012X
10.1038/37052
10.1016/S0959-437X(96)80032-3
10.1016/S0959-437X(97)80037-8
10.1128/MCB.19.8.5441
/ Mol. Cell. Biol. / Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for pre-18S rRNA processing. by Lee (1999)10.1016/S0960-9822(00)00432-2
10.1093/emboj/18.23.6730
10.1093/genetics/154.3.1013
/ Genetics / Proteasome mutants, pre4-2 and ump1-2, suppress the essential function but not the mitochondrial RNase P function of the Saccharomyces cerevisiae gene RPM2. by Lutz (2000)10.1128/MMBR.63.4.923-967.1999
/ Microbiol. Mol. Biol. Rev. / Stress genes and proteins in the archaea. by Macario (1999)10.1101/gr.9.7.608
/ Genome Res. / Comparative genomics of the Archaea (Euryarchaeota): Evolution of conserved protein families, the stable core, and the variable shell. by Makarova (1999)10.1038/47048
- Miller J.H. Reznikoff W.S.E. (1978) In. The operon, pp. . (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).
10.1016/S0092-8674(00)80432-8
10.1016/0168-9525(96)20006-X
10.1073/pnas.190337797
10.1073/pnas.96.6.2896
10.1093/emboj/16.15.4727
10.1002/prot.340190108
10.1038/35035069
10.1007/PL00006251
10.1128/jb.179.22.7135-7155.1997
/ J. Bacteriol. / Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: Functional analysis and comparative genomics. by Smith (1997)10.1128/MCB.20.5.1515-1525.2000
10.1016/S0960-9822(02)00478-5
10.1126/science.278.5338.631
10.1093/nar/28.1.33
10.1093/bioinformatics/15.7.536
10.1093/nar/25.24.4876
10.1016/S0092-8674(00)81446-4
10.1016/S0092-8674(00)81520-2
10.1007/PL00000052
/ J. Mol. Evol. / Genome plasticity as a paradigm of eubacteria evolution. by Watanabe (1997)10.1128/JB.181.18.5814-5824.1999
/ J. Bacteriol. / Halophilic 20S proteasomes of the archaeon Haloferax volcanii: Purification, characterization, and gene sequence analysis. by Wilson (1999)10.1128/JB.182.6.1680-1692.2000
-
Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S., and Koonin, E.V. 2000. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 11: (in press)..
(
10.1101/gr.161901
)
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 26, 2002, 8 p.m.) |
Deposited | 3 years, 9 months ago (Nov. 18, 2021, 1:56 p.m.) |
Indexed | 1 month, 2 weeks ago (July 7, 2025, 8:26 a.m.) |
Issued | 24 years, 6 months ago (Feb. 1, 2001) |
Published | 24 years, 6 months ago (Feb. 1, 2001) |
Published Online | 24 years, 6 months ago (Feb. 1, 2001) |
Published Print | 24 years, 6 months ago (Feb. 1, 2001) |
@article{Koonin_2001, title={Prediction of the Archaeal Exosome and Its Connections with the Proteasome and the Translation and Transcription Machineries by a Comparative-Genomic Approach}, volume={11}, ISSN={1549-5469}, url={http://dx.doi.org/10.1101/gr.162001}, DOI={10.1101/gr.162001}, number={2}, journal={Genome Research}, publisher={Cold Spring Harbor Laboratory}, author={Koonin, Eugene V. and Wolf, Yuri I. and Aravind, L.}, year={2001}, month=feb, pages={240–252} }