Abstract
In response to DNA damage and replication blocks, yeast cells arrest at distinct points in the cell cycle and induce the transcription of genes whose products facilitate DNA repair. Examination of the inducibility of RNR3 in response to UV damage has revealed that the various checkpoint genes can be arranged in a pathway consistent with their requirement to arrest cells at different stages of the cell cycle. While RAD9, RAD24, and MEC3 are required to activate the DNA damage checkpoint when cells are in G1 or G2, POL2 is required to sense UV damage and replication blocks when cells are in S phase. The phosphorylation of the essential central transducer, Rad53p, is dependent on POL2 and RAD9 in response to UV damage, indicating that RAD53 functions downstream of both these genes. Mutants defective for both pathways are severely deficient in Rad53p phosphorylation and RNR3 induction and are significantly more sensitive to DNA damage and replication blocks than single mutants alone. These results show that POL2 and RAD9 function in parallel branches for sensing and transducing the UV DNA damage signal. Each of these pathways subsequently activates the central transducers Mec1p/Esr1p/Sad3p and Rad53p/Mec2p/Sad1p, which are required for both cell-cycle arrest and transcriptional responses.
References
51
Referenced
129
10.1002/j.1460-2075.1992.tb05179.x
/ EMBO J. / DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. (1992)10.1091/mbc.5.2.147
10.1101/gad.8.20.2416
10.1126/science.271.5247.314
10.1016/S0960-9822(95)00234-X
10.1101/gad.4.5.740
10.1016/0968-0004(92)90249-9
10.1002/bies.950150507
10.1016/0092-8674(90)90669-6
10.1016/S0968-0004(00)89093-3
10.1101/gad.6.11.2035
10.1126/science.8036497
- Friedberg, E.C., G.C. Walker, and W. Siede. 1995. DNA Repair and Mutagenesis. American Society for Microbiology, Washington, DC.
10.1128/MCB.15.11.6128
/ Mol. Cell Biol. / Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. (1995)10.1016/0092-8674(95)90479-4
10.1126/science.2683079
10.1016/0022-2836(74)90451-3
10.1073/pnas.87.16.6272
10.1016/0092-8674(92)90593-2
10.1093/nar/22.15.3104
10.1091/mbc.7.5.703
10.1016/0076-6879(91)94030-G
10.1016/S0168-9525(00)89112-X
10.1016/0378-1119(94)90250-X
10.1016/0092-8674(93)90496-D
10.1126/science.270.5241.1488
{'key': '2021111418402809000_10.20.2632.27', 'first-page': '5991', 'article-title': 'Ataxia-telangiectasia and cellular responses to DNA damage.', 'volume': '55', 'year': '1995', 'journal-title': 'Cancer Res.'}
/ Cancer Res. / Ataxia-telangiectasia and cellular responses to DNA damage. (1995)10.1016/0092-8674(95)90480-8
{'key': '2021111418402809000_10.20.2632.29', 'first-page': '817', 'article-title': 'A kinase from fission yeast responsible for blocking mitosis in S phase.', 'volume': '372', 'year': '1995', 'journal-title': 'Nature'}
/ Nature / A kinase from fission yeast responsible for blocking mitosis in S phase. (1995)10.1016/0092-8674(95)90448-4
10.1093/genetics/143.1.165
/ Genetics / The REC1 gene of Ustilago maydis, which encodes a 3′–5′ exonuclease, couples DNA repair and completion of DNA synthesis to a mitotic checkpoint. (1996)10.1016/0092-8674(95)90481-6
-
Pearson, R.B., K.I. Mitchelhill, and B.E. Kemp. 1993. Studies of protein kinase specificity using synthetic peptides. In Protein phosphorylation: A practical approach (ed. D.G. Hardie), pp. 265–290. IRL Press, Oxford, UK.
(
10.1093/oso/9780199633067.003.0012
) - Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
10.1126/science.271.5247.357
10.1126/science.7792600
10.1002/bies.950151202
10.1073/pnas.90.17.7985
10.1093/genetics/138.2.271
/ Genetics / Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA damaging agent. (1994)10.1093/nar/24.9.1669
10.1007/BF00279372
10.1101/gad.10.4.395
10.1016/S0021-9258(17)42413-6
/ J. Biol. Chem. / The REC1 gene of Ustilago maydis involved in the cellular response to DNA damage encodes an exonuclease. (1994)10.1146/annurev.bi.54.070185.002233
10.1126/science.271.5247.353
10.1038/363368a0
10.1126/science.3291120
10.1093/genetics/134.1.63
/ Genetics / Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. (1993)10.1101/gad.8.6.652
10.1016/0092-8674(95)90463-8
10.1016/0092-8674(93)90321-G
Dates
Type | When |
---|---|
Created | 18 years, 2 months ago (June 5, 2007, 5:15 p.m.) |
Deposited | 1 year, 6 months ago (Feb. 14, 2024, 4:28 p.m.) |
Indexed | 4 weeks ago (July 30, 2025, 10:22 a.m.) |
Issued | 28 years, 10 months ago (Oct. 15, 1996) |
Published | 28 years, 10 months ago (Oct. 15, 1996) |
Published Online | 28 years, 10 months ago (Oct. 15, 1996) |
Published Print | 28 years, 10 months ago (Oct. 15, 1996) |
@article{Navas_1996, title={RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae.}, volume={10}, ISSN={1549-5477}, url={http://dx.doi.org/10.1101/gad.10.20.2632}, DOI={10.1101/gad.10.20.2632}, number={20}, journal={Genes & Development}, publisher={Cold Spring Harbor Laboratory}, author={Navas, T A and Sanchez, Y and Elledge, S J}, year={1996}, month=oct, pages={2632–2643} }