Abstract
AbstractCryo-EM maps are valuable sources of information for protein structure modeling. However, due to the loss of contrast at high frequencies, they generally need to be post-processed to improve their interpretability. Most popular approaches, based on B-factor correction, suffer from limitations. For instance, they ignore the heterogeneity in the map local quality that reconstructions tend to exhibit. Aiming to overcome these problems, we present DeepEMhancer, a deep learning approach designed to perform automatic post-processing of cryo-EM maps. Trained on a dataset of pairs of experimental maps and maps sharpened using their respective atomic models, DeepEMhancer has learned how to post-process experimental maps performing masking-like and sharpening-like operations in a single step. DeepEMhancer was evaluated on a testing set of 20 different experimental maps, showing its ability to obtain much cleaner and more detailed versions of the experimental maps. Additionally, we illustrated the benefits of DeepEMhancer on the structure of the SARS-CoV-2 RNA polymerase.
Authors
6
- R Sanchez-Garcia (first)
- J Gomez-Blanco (additional)
- A Cuervo (additional)
- JM Carazo (additional)
- COS Sorzano (additional)
- J Vargas (additional)
References
28
Referenced
73
{'key': '2024080410385170000_2020.06.12.148296v3.1', 'first-page': '1181', 'article-title': 'Deep Learning for Validating and Estimating Resolution of Cryo-Electron', 'volume': '24', 'year': '2019', 'journal-title': 'Microscopy Density Maps †. Molecules'}
/ Microscopy Density Maps †. Molecules / Deep Learning for Validating and Estimating Resolution of Cryo-Electron (2019)10.1107/S0907444904019158
10.1126/science.abb7498
-
Gupta, H. , McCann, M.T. , Donati, L. , Unser, M. , 2020. CryoGAN: A New Reconstruction Paradigm for Single-particle Cryo-EM Via Deep Adversarial Learning. bioRxiv 2020.03.20.001016. https://doi.org/10.1101/2020.03.20.001016
(
10.1101/2020.03.20.001016
) -
He, K. , Zhang, X. , Ren, S. , Sun, J. , 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision. pp. 1026–1034. https://doi.org/10.1109/ICCV.2015.123
(
10.1109/ICCV.2015.123
) -
Jakobi, A.J. , Wilmanns, M. , Sachse, C. , 2017. Model-based local density sharpening of cryo-EM maps. Elife 6. https://doi.org/10.7554/eLife.27131
(
10.7554/eLife.27131
) 10.1016/j.cell.2017.12.005
-
Kaur, S. , Gomez-Blanco, J. , Khalifa, A. , Adinarayanan, S. , Sanchez-Garcia, R. , Wrapp, D. , McLellan, J.S. , Bui, K.H. , Vargas, J. , 2020. Local computational methods to improve the interpretability and analysis of cryo-EM maps. bioRxiv 2020.05.11.088013. https://doi.org/10.1101/2020.05.11.088013
(
10.1101/2020.05.11.088013
) 10.7554/eLife.18722.001
{'key': '2024080410385170000_2020.06.12.148296v3.10', 'first-page': 'D396', 'article-title': 'EMDataBank unified data resource for 3DEM', 'volume': '44', 'year': '2015', 'journal-title': 'Nucleic Acids Res'}
/ Nucleic Acids Res / EMDataBank unified data resource for 3DEM (2015)10.1038/s41592-019-0500-1
10.1002/jcc.20084
10.1107/S2052252519011692
/ IUCrJ / DeepRes: A new deep-learning- and aspect-based local resolution method for electron-microscopy maps (2019)10.1093/bioinformatics/btz671
/ Bioinformatics / Automatic local resolution-based sharpening of cryo-EM maps (2020)-
Ronneberger, O. , Fischer, P. , Brox, T. , 2015. U-net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted Intervention-MICCAI. pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
(
10.1007/978-3-319-24574-4_28
) 10.1016/j.jmb.2003.07.013
10.1038/s41598-020-59121-0
10.1126/science.aao1140
10.1107/S2059798318004655
/ Acta Crystallogr. Sect. D Struct. Biol / Automated map sharpening by maximization of detail and connectivity (2018)10.1016/j.jsb.2020.107447
/ J. Struct. Biol / Re-examining the spectra of macromolecules. Current practice of spectral quasi B-factor flattening (2020)-
Wagner, T. , Merino, F. , Stabrin, M. , Moriya, T. , Antoni, C. , Apelbaum, A. , Hagel, P. , Sitsel, O. , Raisch, T. , Prumbaum, D. , Quentin, D. , Roderer, D. , Tacke, S. , Siebolds, B. , Schubert, E. , Shaikh, T.R. , Lill, P. , Gatsogiannis, C. , Raunser, S. , 2019. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2. https://doi.org/10.1038/s42003-019-0437-z
(
10.1038/s42003-019-0437-z
) -
Walter, J.D. , Sawicka, M. , Dutzler, R. , 2019. Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. Elife 8. https://doi.org/10.7554/eLife.46986
(
10.7554/eLife.46986
) 10.1016/j.jsb.2016.07.006
10.1007/s11263-019-01198-w
/ Int. J. Comput. Vis / Group Normalization (2020)-
Yang, W. , Zhang, X. , Tian, Y. , Wang, W. , Xue, J.H. , Liao, Q. , 2019. Deep Learning for Single Image Super-Resolution: A Brief Review. IEEE Trans. Multimed. https://doi.org/10.1109/TMM.2019.2919431
(
10.1109/TMM.2019.2919431
) - Zhong, E.D. , Bepler, T. , Davis, J.H. , Berger, B. , 2019. Reconstructing continuous distributions of 3D protein structure from cryo-EM images.
10.1186/s12859-017-1757-y
-
Zivanov, J. , Nakane, T. , Forsberg, B.O. , Kimanius, D. , Hagen, W.J.H. , Lindahl, E. , Scheres, S.H.W. , 2018. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7. https://doi.org/10.7554/eLife.42166
(
10.7554/eLife.42166
)
@article{Sanchez_Garcia_2020, title={DeepEMhancer: a deep learning solution for cryo-EM volume post-processing}, url={http://dx.doi.org/10.1101/2020.06.12.148296}, DOI={10.1101/2020.06.12.148296}, publisher={Cold Spring Harbor Laboratory}, author={Sanchez-Garcia, R and Gomez-Blanco, J and Cuervo, A and Carazo, JM and Sorzano, COS and Vargas, J}, year={2020}, month=jun }