Crossref journal-article
The Royal Society
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences (175)
Abstract

Our studies of the yeast ubiquitin-proteasome pathway have uncovered a number of general principles that govern substrate selectivity and proteolysis in this complex system. Much of the work has focused on the destruction of a yeast transcription factor, MATα2. The α2 protein is polyubiquitinated and rapidly degraded in α–haploid cells. One pathway of proteolytic targeting, which depends on two distinct endoplasmic reticulum–localized ubiquitin–conjugating enzymes, recognizes the hydrophobic face of an amphipathic helix in α2. Interestingly, degradation of α2 is blocked ina/α–diploid cells by heterodimer formation between the α2 anda1 homeodomain proteins. The data suggest that degradation signals may overlap protein–protein interaction surfaces, allowing a straightforward steric mechanism for regulated degradation. Analysis of α2 degradation led to the identification of both 20S and 26S proteasome subunits, and several key features of proteasome assembly and active–site formation were subsequently uncovered. Finally, it has become clear that protein (poly)ubiquitination is highly dynamicin vivo, and our studies of yeast de–ubiquitinating enzymes illustrate how such enzymes can facilitate the proteolysis of diverse substrates.

Bibliography

Hochstrasser, M., Johnson, P. R., Arendt, C. S., Amerik, A. Y., Swaminathan, S., Swanson, R., Li, S., Laney, J., Pals-Rylaarsdam, R., Nowak, J., & Connerly, P. L. (1999). The Saccharomyces cerevisiae ubiquitin–proteasome system. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1389), 1513–1522.

Authors 11
  1. M. Hochstrasser (first)
  2. P. R. Johnson (additional)
  3. C. S. Arendt (additional)
  4. A. Y. Amerik (additional)
  5. S. Swaminathan (additional)
  6. R. Swanson (additional)
  7. S. Li (additional)
  8. J. Laney (additional)
  9. R. Pals-Rylaarsdam (additional)
  10. J. Nowak (additional)
  11. P. L. Connerly (additional)
References 39 Referenced 26
  1. 10.1093/emboj/16.16.4826
  2. Arendt C. S. & Hochstrasser M. 1997 Identi¢cation of the yeast 0S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl Acad. ci. U A 94 7156^7161. (10.1073/pnas.94.14.7156)
  3. Baker R. T. Tobias J. W. & Varshavsky A. 199 Ubiquitinspeci¢c proteases of accharomyces cerevisiae. Cloning of UBP and UBP3 and functional analysis of the UBP gene family. J. Biol. Chem. 267 3 364^ 3 375.
  4. Beal R. Deveraux Q. Xia G. Rechsteiner M. & Pickart C. 1996 Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc. Natl Acad. ci. U A 93 861^866. (10.1073/pnas.93.2.861)
  5. Biederer T. Volkwein C. & Sommer T. 1997 Role of Cue1p in ubiquitination and degradation at the ER surface. cience 278 1806^1809. (10.1126/science.278.5344.1806)
  6. 10.1002/j.1460-2075.1995.tb07260.x
  7. Chen P. & Hochstrasser M. 1996 Autocatalytic subunit processing couples active site formation in the 0S proteasome to completion of assembly. Cell 86 961^97 . (10.1016/S0092-8674(00)80171-3)
  8. Chen P. Johnson P. Sommer T. Jentsch S. & Hochstrasser M. 1993 Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATa repressor. Cell 74 357^369. (10.1016/0092-8674(93)90426-Q)
  9. 10.1016/S0021-9258(18)45815-2 / J. Biol. Chem. / A 5-kilodalton ubiquitin carrier protein (E ) catalyzes multi-ubiquitin chain synthesis via Iysine 48 of ubiquitin by Chen Z. (1990)
  10. Dick L. R. Moomaw C. R. Pramanik B. C. DeMartino G. N. & Slaughter C. A. 199 Identi¢cation and localization of a cysteinyl residue critical for the trypsin-like catalytic activity of the proteasome. Biochemistry 31 7 47^7355. (10.1021/bi00147a020)
  11. 10.1016/0014-5793(94)01451-6
  12. Fenteany G. Standaert R. F. Lane W. S. Choi S. Corey E. J. & Schreiber S. L. 1995 Inhibition of proteasome activities and subunit-speci¢c amino-terminal threonine modi¢cation by lactacystin. cience 268 7 6^731. (10.1126/science.7732382)
  13. Glotzer M. Murray A. W. & Kirschner M. W. 1991 Cyclin is degraded by the ubiquitin pathway. Nature 349 13 ^138. (10.1038/349132a0)
  14. Groll M. Ditzel L. Lo we J. Stock D. Bochtler M. Bartunik H. D. & Huber R. 1997 Structure of 0S proteasome from yeast at .4 Ð resolution. Nature 386 463^471. (10.1038/386463a0)
  15. Hadari T. Warms J. V. B. Rose I. A. & Hershko A. 199 A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chainsörole in protein degradation. J. Biol. Chem. 267 719^7 7. (10.1016/S0021-9258(18)48343-3)
  16. Herskowitz I. Rine J. & Strathern J. 199 Mating-type determination and mating-type interconversion in accharomyces cerevisiae. In The molecular and cellular biology of the yeast Saccharomyces. . Gene expression. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.
  17. 10.1002/j.1460-2075.1994.tb06394.x
  18. 10.1146/annurev.genet.30.1.405
  19. Hochstrasser M. Papa F. R. Chen P. Swaminathan S. Johnson P. Stillman L. Amerik A. & Li S.-J. 1995 The DOA pathway: studies on the functions and mechanisms of ubiquitin-dependent protein degradation in the yeast accharomyces cerevisiae. Cold pring Harbor ymp. Quant. Biol. 60 503^513. (10.1101/SQB.1995.060.01.054)
  20. 10.1016/S0092-8674(00)81421-X
  21. Kopp F. Hendil K. B. Dahlmann B. Kristensen P. Sobek A. & Uerkvitz W. 1997 Subunit arrangement in the human 0S proteasome. Proc. Natl Acad. ci. U A 94 939^ 944. (10.1073/pnas.94.7.2939)
  22. Kopski K. M. & Hu¡aker T. C. 1997 Suppressors of the ndc10-2 mutation: a role for the ubiquitin system in accharomyces cerevisiae kinetochore function. Genetics 147 409^4 0. (10.1093/genetics/147.2.409)
  23. 10.1002/j.1460-2075.1994.tb06948.x
  24. Lam Y. A. Xu W. DeMartino G. N. & Cohen R. E. 1997 Editing of ubiquitin conjugates by an isopeptidase in the 6S proteasome. Nature 385 737^740. (10.1038/385737a0)
  25. 10.1074/jbc.273.44.29178
  26. Lo we J. Stock D. Jap B. Zwickl P. Baumeister W. & Huber R. 1995 Crystal structure of the 0S proteasome from the archaeon T. acidophilum at 3.4 Ð resolution. cience 268 533^539. (10.1126/science.7725097)
  27. Lupas A. 1996 Coiled coils: new structures and new functions. Trends Biochem. ci. 21 375^38 . (10.1016/0968-0004(96)10052-9)
  28. 10.1083/jcb.140.6.1441
  29. Melandri F. Grenier L. Plamondon L. Huskey W. P. & Stein R. L. 1996 Kinetic studies on the inhibition of isopeptidase T by ubiquitin aldehyde. Biochemistry 35 1 893^1 900. (10.1021/bi9612935)
  30. Papa F. & Hochstrasser M. 1993 The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre- oncogene. Nature 366 313^319. (10.1038/366313a0)
  31. Peters J. M. 1994 Proteasomes: protein degradation machines of the cell. Trends Biochem. ci. 19 377^38 . (10.1016/0968-0004(94)90115-5)
  32. Rechsteiner M. & Rogers S. W. 1996 PEST sequences and regulation by proteolysis. Trends Biochem. ci. 21 67^ 71. (10.1016/S0968-0004(96)10031-1)
  33. Rubin D. M. & Finley D. 1995 The proteasome: a proteindegrading organelle? Curr. Biol. 5 854^858. (10.1016/S0960-9822(95)00172-2)
  34. Seemo ller E. Lupas A. Stock D. Lo we J. Huber R. & Baumeister W. 1995 Proteasome from Thermoplasma acidophilum: a threonine protease. cience 268 579^58 . (10.1126/science.7725107)
  35. Treier M. Staszewski L. M. & Bohmann D. 1994 Ubiquitindependent c-jun degradation in vivo is mediated by the d domain. Cell 78 787^798. (10.1016/S0092-8674(94)90502-9)
  36. Van Nocker S. & Vierstra R. D. 1991 Cloning and characterization of a 0-kDa ubiquitin carrier protein from wheat that catalyzes multiubiquitin chain formation in vitro. Proc. Natl Acad. ci. U A 88 10 97^10 301. (10.1073/pnas.88.22.10297)
  37. Varshavsky A. 1997 The ubiquitin system. Trends Biochem. ci. 22 383^387. (10.1016/S0968-0004(97)01122-5)
  38. Wilkinson K. D. & Hochstrasser M. 1998 Deubiquitinating enzymes. In Ubiquitin and the biology of the cell (ed. J. M. Peters J. R. Harris & D. Finley) pp. 99^1 5. New York: Plenum. (10.1007/978-1-4899-1922-9_4)
  39. Wilkinson K. D. Tashayev V. L. O'Connor L. B. Larsen C. N. Kasperek E. & Pickart C. M. 1995 Metabolism of the polyubiquitin degradation signal: structure mechanism and role of isopeptidase T. Biochemistry 34 14 535^14 546. (10.1021/bi00044a032)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 7:55 p.m.)
Deposited 2 years, 4 months ago (April 23, 2023, 1:37 a.m.)
Indexed 11 months, 2 weeks ago (Sept. 15, 2024, 5:40 p.m.)
Issued 25 years, 11 months ago (Sept. 29, 1999)
Published 25 years, 11 months ago (Sept. 29, 1999)
Published Online 25 years, 11 months ago (Sept. 29, 1999)
Published Print 25 years, 11 months ago (Sept. 29, 1999)
Funders 0

None

@article{Hochstrasser_1999, title={The Saccharomyces cerevisiae ubiquitin–proteasome system}, volume={354}, ISSN={1471-2970}, url={http://dx.doi.org/10.1098/rstb.1999.0495}, DOI={10.1098/rstb.1999.0495}, number={1389}, journal={Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences}, publisher={The Royal Society}, author={Hochstrasser, M. and Johnson, P. R. and Arendt, C. S. and Amerik, A. Y. and Swaminathan, S. and Swanson, R. and Li, S. and Laney, J. and Pals-Rylaarsdam, R. and Nowak, J. and Connerly, P. L.}, editor={Hunt, R. T. and Nasmyth, K. A. and Diffley, J.}, year={1999}, month=sep, pages={1513–1522} }