Abstract
We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom–up, top–down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations.
References
26
Referenced
118
-
Barlow H. 1989 Unsupervised learning. Neural Comput. 1 295^311.
(
10.1162/neco.1989.1.3.295
) -
Becker S. & Hinton G. 1992 A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355 161^163.
(
10.1038/355161a0
) -
Bishop C. M. Svensen M. & Williams C. K. I. 1997 GTM: a principled alternative to the self-organizing map. Neural Comput. (In the press.)
(
10.1007/3-540-61510-5_31
) {'key': 'p_4', 'first-page': '38', 'article-title': 'Maximum likelihood from incomplete data via the EM algorithm', 'volume': '39', 'author': 'Dempster A.', 'year': '1977', 'journal-title': 'Jl R. Statist. Soc. B'}
/ Jl R. Statist. Soc. B / Maximum likelihood from incomplete data via the EM algorithm by Dempster A. (1977)-
Devroye L. 1986 Non-uniform random variate generation. New York: Springer.
(
10.1007/978-1-4613-8643-8
) -
Durbin R. & Willshaw D. 1987 An analogue approach to the travelling salesman problem using an elastic net method. Nature 326 689^691.
(
10.1038/326689a0
) -
Everitt B. S. 1984 An introduction to latent variable models. London: Chapman & Hall.
(
10.1007/978-94-009-5564-6
) - Frey B. J. 1997 Continuous sigmoidal belief networks trained using slice sampling. In Advances in neural information processing systems 9 (ed. M. Mozer M. Jordan & T. Petsche). Cambridge MA: MIT Press.
{'key': 'p_9', 'first-page': '741', 'article-title': 'Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images', 'volume': '6', 'author': 'Geman S.', 'year': '1984', 'journal-title': 'IEEE Trans. on Pattern Analysis and Machine Intelligence'}
/ IEEE Trans. on Pattern Analysis and Machine Intelligence / Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images by Geman S. (1984)-
Gilks W. R. & Wild P. 1992 Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41 337^348.
(
10.2307/2347565
) - Gregory R. L. 1970 The intelligent eye. London: Wiedenfeld & Nicolson.
- Hinton G. E. & Sejnowski T. J. 1986 Learning and relearning in Boltzmann machines. In Parallel distributed processing: explorations in the microstructure of cognition. Vol. 1: foundations (ed. D. E. Rumelhart & J. L. McClelland). Cambridge MA: MIT Press.
- Hinton G. E. & Sejnowski T. J. 1983 Optimal perceptual Inference. In Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition pp. 448^453. Washington DC.
-
Hinton G. E. Dayan P. Frey B. J. & Neal R. M. 1995 The wake ^sleep algorithm for unsupervised neural networks. Science 268 1158^1161.
(
10.1126/science.7761831
) -
Horn B. K. P. 1977 Understanding image intensities. Artif. Intell. 88 201^231.
(
10.1016/0004-3702(77)90020-0
) 10.1162/neco.1991.3.1.79
10.1007/BF00337288
- Lee D. D. & Seung H. S. 1997 Unsupervised learning by convex and conic coding. In Advances in neural information processing systems 9 (ed. M. Mozer M. Jordan & T. Petsche). Cambridge MA: MIT Press.
- Lewicki M. S. & Sejnowski T. J. 1997 Bayesian unsupervised learning of higher order structure. In Advances in neural information processing systems 9 (ed. M. Mozer M. Jordan & T. Petsche). Cambridge MA: MIT Press.
- Mumford D. 1994 Neuronal architectures for pattern-theoretic problems. In Large-scale neuroneal theories of the brain (ed. C. Koch & J. L. Davis) pp.125^152. Cambridge MA: MIT Press.
10.1016/0004-3702(92)90065-6
- Neal R. M. & Dayan P. 1996 Factor analysis using delta-rule wake ^sleep learning. Technical report no. 9607 Dept. of Statistics University of Toronto Canada.
-
Olshausen B. A. & Field D. J. 1996 Emergence of simple-cell receptive ¢eld properties by learning a sparse code for natural images. Nature 381 607^609.
(
10.1038/381607a0
) -
Pearl J. 1988 Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo CA: Morgan Kaufmann.
(
10.1016/B978-0-08-051489-5.50008-4
) 10.1207/s15516709cog0901_5
-
Rumelhart D. E. Hinton G. E. & Williams R. J. 1986 Learning internal representations by back-propagating errors. Nature 323 533^536.
(
10.1038/323533a0
)
Dates
Type | When |
---|---|
Created | 22 years, 11 months ago (Oct. 1, 2002, 1:23 p.m.) |
Deposited | 4 years, 6 months ago (Feb. 20, 2021, 1:11 p.m.) |
Indexed | 1 month, 3 weeks ago (July 11, 2025, 6:45 a.m.) |
Issued | 28 years ago (Aug. 29, 1997) |
Published | 28 years ago (Aug. 29, 1997) |
Published Online | 28 years ago (Aug. 29, 1997) |
Published Print | 28 years ago (Aug. 29, 1997) |
@article{Hinton_1997, title={Generative models for discovering sparse distributed representations}, volume={352}, ISSN={1471-2970}, url={http://dx.doi.org/10.1098/rstb.1997.0101}, DOI={10.1098/rstb.1997.0101}, number={1358}, journal={Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences}, publisher={The Royal Society}, author={Hinton, Geoffrey E. and Ghahramani, Zoubin}, editor={Anderson, J. and Barlow, H. B. and Gregory, R. L.}, year={1997}, month=aug, pages={1177–1190} }