Crossref journal-article
The Royal Society
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (175)
Abstract

Early theoretical and simulation work independently undertaken by Packard, Langton and Kauffman suggested that adaptability and computational power would be optimized in systems at the ‘edge of chaos’, at a critical point in a phase transition between total randomness and boring order. This provocative hypothesis has received much attention, but biological experiments supporting it have been relatively few. Here, we review recent experiments on networks of cortical neurons, showing that they appear to be operating near the critical point. Simulation studies capture the main features of these data and suggest that criticality may allow cortical networks to optimize information processing. These simulations lead to predictions that could be tested in the near future, possibly providing further experimental evidence for the criticality hypothesis.

Bibliography

Beggs, J. M. (2007). The criticality hypothesis: how local cortical networks might optimize information processing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1864), 329–343.

Authors 1
  1. John M Beggs (first)
References 57 Referenced 361
  1. 10.1152/jn.1993.70.4.1629
  2. Alessio R. Cozzi L. D'Angelo P. & Sanguinetti V. 2006 Cultures of dissociated neurons display a variety of avalanche behaviors. In ESANN'2006 Proc.—European Symp. on Artificial Neural Networks Bruges Belgium 26–28 April 2006 .
  3. Bak P How nature works: the science of self-organized criticality. 1996 New York NY:Copernicus. (10.1007/978-1-4757-5426-1)
  4. 10.1103/PhysRevE.63.031912
  5. 10.1103/PhysRevLett.59.381
  6. 10.1523/JNEUROSCI.23-35-11167.2003
  7. 10.1523/JNEUROSCI.0540-04.2004
  8. 10.1162/089976604323057443
  9. 10.1103/PhysRevLett.84.6114
  10. 10.3233/THC-1996-4109
  11. 10.1016/S0956-5663(98)00015-3
  12. 10.1103/PhysRevE.75.051919
  13. 10.1016/S0306-4522(98)00472-2
  14. 10.1016/S0149-7634(01)00062-8
  15. 10.1103/PhysRevLett.78.1492
  16. 10.1126/science.290.5492.812
  17. 10.1103/PhysRevLett.96.028107
  18. 10.1103/PhysRevE.66.066137
  19. 10.1016/j.neuron.2005.02.001
  20. 10.1016/0165-0270(82)90046-2
  21. 10.1038/nature00974
  22. 10.1103/PhysRevLett.94.058101
  23. Harris T.E The theory of branching processes. 1989 New York NY:Dover.
  24. 10.1103/PhysRevLett.75.1222
  25. 10.1016/j.neucom.2005.12.060
  26. Jensen H.J Self-organized criticality: emergent complex behavior in physical and biological systems. 1998 Cambridge UK:Cambridge University Press. (10.1017/CBO9780511622717)
  27. 10.1016/S0302-4598(99)00083-5
  28. Kauffman S.A The origins of order: self-organization and selection in evolution. 1993 New York NY:Oxford University Press. (10.1007/978-94-015-8054-0_8)
  29. 10.1016/S0022-5193(05)80094-3
  30. 10.1038/nphys289
  31. 10.1016/0167-2789(90)90064-V
  32. 10.1162/089976604323057434
  33. 10.1016/j.neunet.2007.04.017
  34. Levina A. Hermann J. M. & Geisel T. 2005 Dynamical synapses give rise to a power-law distribution of neuronal avalanches. In 2005 NIPS Proc . See http://books.nips.cc/papers/files/nips18/NIPS2005_0646.pdf.
  35. 10.1103/PhysRevE.71.016133
  36. 10.1523/JNEUROSCI.21-04-01370.2001
  37. 10.1016/S0168-9002(98)00734-7
  38. 10.1523/JNEUROSCI.17-15-05666.1997
  39. 10.1162/089976602760407955
  40. 10.1523/JNEUROSCI.15-10-06834.1995
  41. 10.1371/journal.pone.0000439
  42. {'key': 'e_1_3_2_43_1', 'first-page': '89', 'article-title': 'Revisiting the edge of chaos: evolving cellular automata to perform computations', 'volume': '7', 'author': 'Mitchell M', 'year': '1993', 'journal-title': 'Complex Syst'} / Complex Syst / Revisiting the edge of chaos: evolving cellular automata to perform computations by Mitchell M (1993)
  43. {'key': 'e_1_3_2_44_1', 'first-page': '293', 'volume-title': 'Dynamic patterns in complex systems', 'author': 'Packard N', 'year': '1988'} / Dynamic patterns in complex systems by Packard N (1988)
  44. 10.1103/PhysRevE.53.414
  45. {'key': 'e_1_3_2_46_1', 'first-page': '1', 'article-title': 'Neuronal avalanches in vivo', 'volume': '531', 'author': 'Petermann T', 'year': '2006', 'journal-title': 'Soc. Neurosci. Abstr'} / Soc. Neurosci. Abstr / Neuronal avalanches in vivo by Petermann T (2006)
  46. 10.1016/0165-0270(80)90042-4
  47. 10.1103/PhysRevLett.88.118102
  48. Stanley H.E Introduction to phase transitions and critical phenomena. 1987 New York NY:Oxford University Press.
  49. Stauffer D Introduction to percolation theory. 1994 London UK:Taylor and Francis.
  50. 10.1523/JNEUROSCI.0723-06.2006
  51. 10.1364/JOSAA.14.000529
  52. 10.1093/cercor/10.12.1185
  53. 10.1523/JNEUROSCI.18-05-01893.1998
  54. 10.1146/annurev.neuro.28.061604.135637
  55. 10.1186/1471-2202-7-11
  56. 10.1097/00001756-200211150-00005
  57. Yeomans J.M Statistical mechanics of phase transitions. 1992 New York NY:Oxford University Press. (10.1093/oso/9780198517290.001.0001)
Dates
Type When
Created 18 years ago (Aug. 16, 2007, 12:06 p.m.)
Deposited 1 year, 6 months ago (Feb. 17, 2024, 7:26 a.m.)
Indexed 19 minutes ago (Aug. 29, 2025, 8:37 a.m.)
Issued 18 years ago (Aug. 2, 2007)
Published 18 years ago (Aug. 2, 2007)
Published Online 18 years ago (Aug. 2, 2007)
Published Print 17 years, 6 months ago (Feb. 13, 2008)
Funders 0

None

@article{Beggs_2007, title={The criticality hypothesis: how local cortical networks might optimize information processing}, volume={366}, ISSN={1471-2962}, url={http://dx.doi.org/10.1098/rsta.2007.2092}, DOI={10.1098/rsta.2007.2092}, number={1864}, journal={Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}, publisher={The Royal Society}, author={Beggs, John M}, year={2007}, month=aug, pages={329–343} }