Abstract
The theory previously developed and applied to calculate the correlation energy of a free-electron gas is extended in this paper to calculate the energy of an electron gas in a potential field. Two new features arise: (i) the introduction of a self-consistent field which is a generalization of the ordinary Hartree field; (ii) the occurrence of ‘local field correction’ effects. It is shown that the energy of the gas can be expressed in terms of the eigenvalues of a certain homogeneous integral equation and a stationary principle for these eigenvalues is given. The theory is applied to crystals and an approximate expression for the correlation energy of a metal is derived neglecting Lorentz-Lorenz corrections effects.
References
6
Referenced
73
10.1103/PhysRev.92.609
{'key': 'p_2', 'first-page': '89', 'article-title': 'Proc', 'volume': '24', 'year': '1928', 'journal-title': 'Carnb. Soc.'}
/ Carnb. Soc. / Proc (1928)10.1088/0370-1298/68/11/304
{'key': 'p_4', 'first-page': '539', 'article-title': 'Proc. Roy', 'volume': '240', 'year': '1957', 'journal-title': 'Soc. A'}
/ Soc. A / Proc. Roy (1957){'key': 'p_5', 'first-page': '336', 'article-title': 'Proc. Roy', 'volume': '243', 'year': '1958', 'journal-title': 'Soc. A'}
/ Soc. A / Proc. Roy (1958)- L ovitt W. V. 1924 Linear integral equations. New Y ork: McGraw-Hill.
Dates
Type | When |
---|---|
Created | 18 years, 8 months ago (Dec. 15, 2006, 1:43 p.m.) |
Deposited | 4 years, 6 months ago (Feb. 17, 2021, 11:05 p.m.) |
Indexed | 1 year, 6 months ago (Feb. 10, 2024, 7:26 a.m.) |
Issued | 67 years, 5 months ago (March 11, 1958) |
Published | 67 years, 5 months ago (March 11, 1958) |
Published Online | 28 years, 7 months ago (Jan. 1, 1997) |
Published Print | 67 years, 5 months ago (March 11, 1958) |
@article{1958, volume={244}, ISSN={2053-9169}, url={http://dx.doi.org/10.1098/rspa.1958.0036}, DOI={10.1098/rspa.1958.0036}, number={1237}, journal={Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences}, publisher={The Royal Society}, year={1958}, month=mar, pages={199–211} }