Crossref journal-article
Oxford University Press (OUP)
Bioinformatics (286)
Abstract

Abstract Motivation: Application of mass spectrometry in proteomics is a breakthrough in high-throughput analyses. Early applications have focused on protein expression profiles to differentiate among various types of tissue samples (e.g. normal versus tumor). Here our goal is to use mass spectra to differentiate bacterial species using whole-organism samples. The raw spectra are similar to spectra of tissue samples, raising some of the same statistical issues (e.g. non-uniform baselines and higher noise associated with higher baseline), but are substantially noisier. As a result, new preprocessing procedures are required before these spectra can be used for statistical classification. Results: In this study, we introduce novel preprocessing steps that can be used with any mass spectra. These comprise a standardization step and a denoising step. The noise level for each spectrum is determined using only data from that spectrum. Only spectral features that exceed a threshold defined by the noise level are subsequently used for classification. Using this approach, we trained the Random Forest program to classify 240 mass spectra into four bacterial types. The method resulted in zero prediction errors in the training samples and in two test datasets having 240 and 300 spectra, respectively. Availability: Fortran code for standardization and denoising is available at the supplementary information website. Supplementary information:  http://www.stat.uga.edu/~datta/Massspec/supp.html

Bibliography

Satten, G. A., Datta, S., Moura, H., Woolfitt, A. R., Carvalho, M. da G., Carlone, G. M., De, B. K., Pavlopoulos, A., & Barr, J. R. (2004). Standardization and denoising algorithms for mass spectra to classify whole-organism bacterial specimens. Bioinformatics, 20(17), 3128–3136.

Authors 9
  1. Glen A. Satten (first)
  2. Somnath Datta (additional)
  3. Hercules Moura (additional)
  4. Adrian R. Woolfitt (additional)
  5. Maria da G. Carvalho (additional)
  6. George M. Carlone (additional)
  7. Barun K. De (additional)
  8. Antonis Pavlopoulos (additional)
  9. John R. Barr (additional)
References 0 Referenced 64

None

Dates
Type When
Created 21 years, 2 months ago (June 24, 2004, 8:25 p.m.)
Deposited 2 years, 7 months ago (Jan. 25, 2023, 10:58 a.m.)
Indexed 5 months ago (March 19, 2025, 10:08 a.m.)
Issued 21 years, 2 months ago (June 23, 2004)
Published 21 years, 2 months ago (June 23, 2004)
Published Online 21 years, 2 months ago (June 23, 2004)
Published Print 20 years, 9 months ago (Nov. 22, 2004)
Funders 0

None

@article{Satten_2004, title={Standardization and denoising algorithms for mass spectra to classify whole-organism bacterial specimens}, volume={20}, ISSN={1367-4803}, url={http://dx.doi.org/10.1093/bioinformatics/bth372}, DOI={10.1093/bioinformatics/bth372}, number={17}, journal={Bioinformatics}, publisher={Oxford University Press (OUP)}, author={Satten, Glen A. and Datta, Somnath and Moura, Hercules and Woolfitt, Adrian R. and Carvalho, Maria da G. and Carlone, George M. and De, Barun K. and Pavlopoulos, Antonis and Barr, John R.}, year={2004}, month=jun, pages={3128–3136} }