Abstract
“Splicing speckles” are major nuclear domains rich in components of the splicing machinery and polyA+RNA. Although speckles contain little detectable transcriptional activity, they are found preferentially associated with specific mRNA-coding genes and gene-rich R bands, and they accumulate some unspliced pre-mRNAs. RNA polymerase II transcribes mRNAs and is required for splicing, with some reports suggesting that the inactive complexes are stored in splicing speckles. Using ultrathin cryosections to improve optical resolution and preserve nuclear structure, we find that all forms of polymerase II are present, but not enriched, within speckles. Inhibition of polymerase activity shows that speckles do not act as major storage sites for inactive polymerase II complexes but that they contain a stable pool of polymerase II phosphorylated on serine2residues of the C-terminal domain, which is transcriptionally inactive and may have roles in spliceosome assembly or posttranscriptional splicing of pre-mRNAs. Paraspeckle domains lie adjacent to speckles, but little is known about their protein content or putative roles in the expression of the speckle-associated genes. We find that paraspeckles are transcriptionally inactive but contain polymerase II, which remains stably associated upon transcriptional inhibition, when paraspeckles reorganize around nucleoli in the form of caps.
References
64
Referenced
83
-
Bird, G., Zorio, D.A.R., and Bentley, D. L. (2004). RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation.Mol. Cell. Biol.24, 8963–8969.
(
10.1128/MCB.24.20.8963-8969.2004
) -
Bisotto, S., Lauriault, P., Duval, M., and Vincent, M. (1995). Colocalization of a high molecular mass phosphoprotein of the nuclear matrix (p255) with spliceosomes.J. Cell Sci.108, 1873–1882.
(
10.1242/jcs.108.5.1873
) - Branco, M. R., Xie, S. Q., Martin, S., and Pombo, A. (2005). Correlative microscopy using Tokuyasu cryosections: applications for immunolabeling and in situ hybridization. In:Cell Imaging, ed. D. Stephens: Scion Publishing, 201–217.
-
Bregman, D. B., Du, L., Li, Y., Ribisi, S., and Warren, S. L. (1994). Cytostellin distributes to nuclear regions enriched with splicing factors.J. Cell Sci.107, 387–396.
(
10.1242/jcs.107.3.387
) -
Bregman, D. B., Du, L., Van Der Zee, S., and Warren, S. L. (1995). Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains.J. Cell Biol.129, 287–298.
(
10.1083/jcb.129.2.287
) -
Carmo-Fonseca, M., Pepperkok, R., Carvalho, M. T., and Lamond, A. I. (1992). Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies.J. Cell Biol.117, 1–14.
(
10.1083/jcb.117.1.1
) -
Cho, E. J., Kobor, M. S., Kim, M., Greenblatt, J., and Buratowski, S. (2001). Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain.Genes Dev.15, 3319–3329.
(
10.1101/gad.935901
) -
Clemson, C. M., and Lawrence, J. B. (1996). Multifunctional compartments in the nucleus: insights from DNA and RNA localization.J. Cell. Biochem.62, 181–190.
(
10.1002/(SICI)1097-4644(199608)62:2<181::AID-JCB6>3.0.CO;2-O
) 10.1091/mbc.10.1.211
-
Colwill, K., Pawson, T., Andrews, B., Prasad, J., Manley, J. L., Bell, J. C., and Duncan, P. I. (1996). The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.EMBO J.15, 265–275.
(
10.1002/j.1460-2075.1996.tb00357.x
) -
Doyle, O., Corden, J. L., Murphy, C., and Gall, J. G. (2002). The distribution of RNA polymerase II largest subunit (RPB1) in theXenopusgerminal vesicle.J. Struct. Biol.140, 154–166.
(
10.1016/S1047-8477(02)00547-6
) -
Emili, A., Shales, M., McCracken, S., Xie, W., Tucker, P. W., Kobayashi, R., Blencowe, B. J., and Ingles, C. J. (2002). Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD.RNA8, 1102–1111.
(
10.1017/S1355838202025037
) -
Fay, F. S., Taneja, K. L., Shenoy, S., Lifshitz, L., and Singer, R. H. (1997). Quantitative digital analysis of diffuse and concentrated nuclear distributions of nascent transcripts, SC35 and poly(A).Exp. Cell Res.231, 27–37.
(
10.1006/excr.1996.3460
) 10.1091/mbc.e04-11-0998
-
Fox, A. H., Lam, Y. W., Leung, A. K., Lyon, C. E., Andersen, J., Mann, M., and Lamond, A. I. (2002). Paraspeckles. A novel nuclear domain.Curr. Biol.12, 13–25.
(
10.1016/S0960-9822(01)00632-7
) -
Fu, X. D., and Maniatis, T. (1990). Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus.Nature343, 437–441.
(
10.1038/343437a0
) -
Grande, M. A., van der Kraan, I., de Jong, L., and van Driel, R. (1997). Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II.J. Cell Sci.110, 1781–1791.
(
10.1242/jcs.110.15.1781
) -
Gui, J. F., Lane, W. S., and Fu, X. D. (1994). A serine kinase regulates intracellular localization of splicing factors in the cell cycle.Nature369, 678–682.
(
10.1038/369678a0
) -
Guillot, P. V., Xie, S. Q., Hollinshead, M., and Pombo, A. (2004). Fixation-induced redistribution of hyperphosphorylated RNA polymerase II in the nucleus of human cells.Exp. Cell Res.295, 460–468.
(
10.1016/j.yexcr.2004.01.020
) 10.1091/mbc.e04-08-0742
-
Herrmann, C. H., and Mancini, M. A. (2001). The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing factor-rich nuclear speckle regions.J. Cell Sci.114, 1491–1503.
(
10.1242/jcs.114.8.1491
) -
Hirose, Y., Tacke, R., and Manley, J. L. (1999). Phosphorylated RNA polymerase II stimulates pre-mRNA splicing.Genes Dev.13, 1234–1239.
(
10.1101/gad.13.10.1234
) -
Iborra, F. J., Jackson, D. A., and Cook, P. R. (1998). The path of transcripts from extra-nucleolar synthetic sites to nuclear pores: transcripts in transit are concentrated in discrete structures containing SR proteins.J. Cell Sci.111, 2269–2282.
(
10.1242/jcs.111.15.2269
) -
Iborra, F. J., Pombo, A., Jackson, D. A., and Cook, P. R. (1996). Active RNA polymerases are localized within discrete transcription “factories'in human nuclei.J. Cell Sci.109, 1427–1436.
(
10.1242/jcs.109.6.1427
) 10.1091/mbc.9.6.1523
-
Johnson, C., Primorac, D., McKinstry, M., McNeil, J., Rowe, D., and Lawrence, J. B. (2000). Tracking COL1A1 RNA in osteogenesis imperfecta: splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain.J. Cell Biol.150, 417–432.
(
10.1083/jcb.150.3.417
) -
Jones, E., Kimura, H., Vigneron, M., Wang, Z., Roeder, R. G., and Cook, P. R. (2000). Isolation and characterization of monoclonal antibodies directed against subunits of human RNA polymerases I, II, and III.Exp. Cell Res.254, 163–172.
(
10.1006/excr.1999.4739
) -
Jones, J. C., Phatnani, H. P., Haystead, T. A., MacDonald, J. A., Alam, S. M., and Greenleaf, A. L. (2004). C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.J. Biol. Chem.279, 24957–24964.
(
10.1074/jbc.M402218200
) -
Kameoka, S., Duque, P., and Konarska, M. M. (2004). p54(nrb) associates with the 5′ splice site within large transcription/splicing complexes.EMBO J.23, 1782–1791.
(
10.1038/sj.emboj.7600187
) -
Kimura, H., Sugaya, K., and Cook, P. R. (2002). The transcription cycle of RNA polymerase II in living cells.J. Cell Biol.159, 777–782.
(
10.1083/jcb.200206019
) -
Kobor, M. S., and Greenblatt, J. (2002). Regulation of transcription elongation by phosphorylation.Biochim. Biophys. Acta1577, 261–275.
(
10.1016/S0167-4781(02)00457-8
) -
Komarnitsky, P., Cho, E. J., and Buratowski, S. (2000). Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription.Genes Dev.14, 2452–2460.
(
10.1101/gad.824700
) -
Kruhlak, M. J., Lever, M. A., Fischle, W., Verdin, E., Bazett-Jones, D. P., and Hendzel, M. J. (2000). Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments.J. Cell Biol.150, 41–51.
(
10.1083/jcb.150.1.41
) -
Lamond, A. I., and Spector, D. L. (2003). Nuclear speckles: a model for nuclear organelles.Nat. Rev. Mol. Cell. Biol.4, 605–612.
(
10.1038/nrm1172
) -
Lavoie, S. B., Albert, A. L., Thibodeau, A., and Vincent, M. (1999). Heat shock-induced alterations in phosphorylation of the largest subunit of RNA polymerase II as revealed by monoclonal antibodies CC-3 and MPM-2. Biochem.Cell Biol.77, 367–374.
(
10.1139/o99-037
) -
Licatalosi, D. D., Geiger, G., Minet, M., Schroeder, S., Cilli, K., McNeil, J. B., and Bentley, D. L. (2002). Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II.Mol. Cell9, 1101–1111.
(
10.1016/S1097-2765(02)00518-X
) -
Maniatis, T., and Reed, R. (2002). An extensive network of coupling among gene expression machines.Nature416, 499–506.
(
10.1038/416499a
) -
Mintz, P. J., Patterson, S. D., Neuwald, A. F., Spahr, C. S., and Spector, D. L. (1999). Purification and biochemical characterization of interchromatin granule clusters.EMBO J.18, 4308–4320.
(
10.1093/emboj/18.15.4308
) -
Mintz, P. J., and Spector, D. L. (2000). Compartmentalization of RNA processing factors within nuclear speckles.J. Struct. Biol.129, 241–251.
(
10.1006/jsbi.2000.4213
) -
Misteli, T., and Spector, D. L. (1999). RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo.Mol. Cell3, 697–705.
(
10.1016/S1097-2765(01)80002-2
) 10.1091/mbc.e03-06-0388
-
Molenaar, C., Abdulle, A., Gena, A., Tanke, H. J., and Dirks, R. W. (2004). Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells.J. Cell Biol.165, 191–202.
(
10.1083/jcb.200310139
) -
Mortillaro, M. J., Blencowe, B. J., Wei, X., Nakayasu, H., Du, L., Warren, S. L., Sharp, P. A., and Berezney, R. (1996). A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix.Proc. Natl. Acad. Sci. USA93, 8253–8257.
(
10.1073/pnas.93.16.8253
) -
Myojin, R., Kuwahara, S., Yasaki, T., Matsunaga, T., Sakurai, T., Kimura, M., Uesugi, S., and Kurihara, Y. (2004). Expression and functional significance of mouse paraspeckle protein 1 on spermatogenesis.Biol. Reprod.71, 926–932.
(
10.1095/biolreprod.104.028159
) -
Neugebauer, K. M., and Roth, M. B. (1997). Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription.Genes Dev.11, 1148–1159.
(
10.1101/gad.11.9.1148
) -
Nguyen, V. T., Giannoni, F., Dubois, M. F., Seo, S. J., Vigneron, M., Kedinger, C., and Bensaude, O. (1996). In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin.Nucleic Acids Res.24, 2924–2929.
(
10.1093/nar/24.15.2924
) -
Ospina, J. K., and Matera, A. G. (2002). Proteomics: the nucleolus weighs in.Curr. Biol.12, R29–R31.
(
10.1016/S0960-9822(01)00645-5
) -
Patturajan, M., Schulte, R. J., Sefton, B. M., Berezney, R., Vincent, M., Bensaude, O., Warren, S. L., and Corden, J. L. (1998). Growth-related changes in phosphorylation of yeast RNA polymerase II.J. Biol. Chem.273, 4689–4694.
(
10.1074/jbc.273.8.4689
) -
Phair, R. D., and Misteli, T. (2000). High mobility of proteins in the mammalian cell nucleus.Nature404, 604–609.
(
10.1038/35007077
) -
Pombo, A., Hollinshead, M., and Cook, P. R. (1999a). Bridging the resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy.J. Histochem. Cytochem.47, 471–480.
(
10.1177/002215549904700405
) -
Pombo, A., Jackson, D. A., Hollinshead, M., Wang, Z., Roeder, R. G., and Cook, P. R. (1999b). Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III.EMBO J.18, 2241–2253.
(
10.1093/emboj/18.8.2241
) -
Puvion, E., and Puvion-Dutilleul, F. (1996). Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules.Exp. Cell Res.229, 217–225.
(
10.1006/excr.1996.0363
) -
Schroeder, S. C., Schwer, B., Shuman, S., and Bentley, D. (2000). Dynamic association of capping enzymes with transcribing RNA polymerase II.Genes Dev.14, 2435–2440.
(
10.1101/gad.836300
) 10.1091/mbc.9.5.1025
-
Shopland, L. S., Johnson, C. V., Byron, M., McNeil, J., and Lawrence, J. B. (2003). Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods.J. Cell Biol.162, 981–990.
(
10.1083/jcb.200303131
) -
Shopland, L. S., Johnson, C. V., and Lawrence, J. B. (2002). Evidence that all SC-35 domains contain mRNAs and that transcripts can be structurally constrained within these domains.J. Struct. Biol.140, 131–139.
(
10.1016/S1047-8477(02)00507-5
) -
Spector, D. L., O'Keefe, R. T., and Jimenez-Garcia, L. F. (1993). Dynamics of transcription and pre-mRNA splicing within the mammalian cell nucleus.Cold Spring Harb. Symp. Quant. Biol.58, 799–805.
(
10.1101/SQB.1993.058.01.087
) -
Sugaya, K., Vigneron, M., and Cook, P. R. (2000). Mammalian cell lines expressing functional RNA polymerase II tagged with the green fluorescent protein.J. Cell Sci.113, 2679–2683.
(
10.1242/jcs.113.15.2679
) -
Warren, S. L., Landolfi, A. S., Curtis, C., and Morrow, J. S. (1992). Cytostellin: a novel, highly conserved protein that undergoes continuous redistribution during the cell cycle.J. Cell Sci.103, 381–388.
(
10.1242/jcs.103.2.381
) -
Wei, X., Somanathan, S., Samarabandu, J., and Berezney, R. (1999). Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles.J. Cell Biol.146, 543–558.
(
10.1083/jcb.146.3.543
) -
Xie, S. Q., and Pombo, A. (2005). Distribution of different phosphorylated forms of RNA polymerase II in relation to Cajal and PML bodies in human cells: an ultrastructural study.Histochem. Cell. Biol.125, 21–31.
(
10.1007/s00418-005-0064-2
) -
Zeng, C., and Berget, S. M. (2000). Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing.Mol. Cell. Biol.20, 8290–8301.
(
10.1128/MCB.20.21.8290-8301.2000
) -
Zeng, C., Kim, E., Warren, S. L., and Berget, S. M. (1997). Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity.EMBO J.16, 1401–1412.
(
10.1093/emboj/16.6.1401
) -
Zorio, D. A., and Bentley, D. L. (2004). The link between mRNA processing and transcription: communication works both ways.Exp. Cell Res.296, 91–97.
(
10.1016/j.yexcr.2004.03.019
)
Dates
Type | When |
---|---|
Created | 19 years, 6 months ago (Feb. 8, 2006, 8:27 p.m.) |
Deposited | 4 years, 1 month ago (July 23, 2021, 3:10 p.m.) |
Indexed | 26 minutes ago (Sept. 4, 2025, 6:29 a.m.) |
Issued | 19 years, 5 months ago (April 1, 2006) |
Published | 19 years, 5 months ago (April 1, 2006) |
Published Print | 19 years, 5 months ago (April 1, 2006) |
@article{Xie_2006, title={Splicing Speckles Are Not Reservoirs of RNA Polymerase II, but Contain an Inactive Form, Phosphorylated on Serine2Residues of the C-Terminal Domain}, volume={17}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e05-08-0726}, DOI={10.1091/mbc.e05-08-0726}, number={4}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Xie, Sheila Q. and Martin, Sonya and Guillot, Pascale V. and Bentley, David L. and Pombo, Ana}, year={2006}, month=apr, pages={1723–1733} }