Abstract
Cdc42 is a small GTPase involved in the regulation of the cytoskeleton and cell polarity. To test whether Cdc42 has an essential role in the formation of filopodia or directed cell migration, we generated Cdc42-deficient fibroblastoid cells by conditional gene inactivation. We report here that loss of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the Golgi apparatus into the direction of migration was decreased. However, expression of dominant negative Cdc42 in Cdc42-null cells resulted in strongly reduced directed migration, severely reduced single cell directionality, and complete loss of Golgi polarization and of directionality of protrusion formation toward the wound, as well as membrane blebbing. Thus, our data show that besides Cdc42 additional GTPases of the Rho-family, which share GEFs with Cdc42, are involved in the establishment and maintenance of cell polarity during directed migration.
Bibliography
Czuchra, A., Wu, X., Meyer, H., van Hengel, J., Schroeder, T., Geffers, R., Rottner, K., & Brakebusch, C. (2005). Cdc42 Is Not Essential for Filopodium Formation, Directed Migration, Cell Polarization, and Mitosis in Fibroblastoid Cells. Molecular Biology of the Cell, 16(10), 4473â4484.
References
37
Referenced
137
-
Abe, T., Kato, M., Miki, H., Takenawa, T., and Endo, T. (2003). Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J. Cell Sci. 116, 155–168.
(
10.1242/jcs.00208
) -
Aspenström, P., Fransson, A., and Saras, J. (2004). Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377, 327–337.
(
10.1042/bj20031041
) -
Bishop, A. L., and Hall, A. (2000). Rho GTPases and their effector proteins. Biochem. J. 348, 241–255.
(
10.1042/bj3480241
) -
Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743–781.
(
10.1146/annurev.biochem.72.121801.161742
) 10.1091/mbc.11.11.3703
-
Carl, U. D., Pollmann, M., Orr, E., Gertler, F. B., Chakraborty, T., and Wehland, J. (1999). Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands. Curr. Biol. 9, 715–718.
(
10.1016/S0960-9822(99)80315-7
) -
Chen, F. et al. (2000). Cdc42 is required for PIP2 induced actin polymerization and early development but not for cell viability. Curr. Biol. 10, 758–765.
(
10.1016/S0960-9822(00)00571-6
) -
Eggert, U. S., Kiger, A. A., Richter, C., Perlman, Z. E., Perrimon, N., Mitchison, T. J., and Field, C. M. (2004). Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol. 2, e379.
(
10.1371/journal.pbio.0020379
) -
Ellis, S., and Mellor, H. (2000). The novel Rho-family GTPase Rif regulates coordinated actin-based membrane rearrangements. Curr. Biol. 10, 1387–1390.
(
10.1016/S0960-9822(00)00777-6
) -
Etienne-Manneville, S., and Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through protein kinase Cζ. Cell 106, 489–498.
(
10.1016/S0092-8674(01)00471-8
) -
Etienne-Manneville, S., and Hall, A. (2003). Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756.
(
10.1038/nature01423
) -
Feig, L. A. (1999). Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat. Cell Biol. 1, E25–E27.
(
10.1038/10018
) -
Frost, J. A., Steen, H., Shapiro, P., Lewis, T., Ahn, N., Shaw, P. E., and Cobb, M. H. (1997). Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16, 6426–6438.
(
10.1093/emboj/16.21.6426
) -
Fujikura, J., Yamato, E., Yonemura, S., Hosoda, K., Masui, S., Nakao, K., Miyazaki, J., and Niwa, H. (2002). Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784–789.
(
10.1101/gad.968802
) -
Fukata, M., Nakagawa, M., and Kaibuchi, K. (2003). Roles of Rho-family GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15, 590–597.
(
10.1016/S0955-0674(03)00097-8
) 10.1091/mbc.9.6.1379
-
Haraguchi, T., Ding, D-Q., Yamamoto, A., Kaneda, T., Koujin, T., and Hiraoka, Y. (1999). Multiple-color fluorescence imaging of chromosomes and microtubules in living cells. Cell Struct. Funct. 24, 291–298.
(
10.1247/csf.24.291
) -
Kozma, R., Ahmed, S., Best, A., and Lim, L. (1995). The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952.
(
10.1128/MCB.15.4.1942
) -
Murphy, G. A., Solski, P. A., Jillian, S. A., Pérez de la Ossa, P., D'Eustachio, P., Der, C. J., and Rush, M. G. (1999). Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene 18, 3831–3845.
(
10.1038/sj.onc.1202758
) -
Neudauer, C. L., Joberty, G., Tatsis, N., and Macara, I. G. (1998). Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr. Biol. 8, 1151–1160.
(
10.1016/S0960-9822(07)00486-1
) -
Nobes, C. D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.
(
10.1016/0092-8674(95)90370-4
) -
Nobes, C. D., and Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244.
(
10.1083/jcb.144.6.1235
) -
Paulsson, M., Aumalley, M., Deutzmann, R., Timpl, R., Beck, K., and Engel, J. (1987). Laminin-nidogen complex. Extraction with chelating agents and structural characterization. Eur. J. Biochem. 166, 11–19.
(
10.1111/j.1432-1033.1987.tb13476.x
) -
Rios, R. M., and Bornens, M. (2003). The Golgi apparatus at the cell centre. Curr. Opin. Cell Biol. 15, 60–66.
(
10.1016/S0955-0674(02)00013-3
) -
Rottner, K., Behrendt, B., Small, J. V., and Wehland, J. (1999). VASP dynamics during lamellipodia protrusion. Nat. Cell Biol. 1, 321–322.
(
10.1038/13040
) -
Saras, J., Wollberg, P., and Aspenström, P. (2004). Wrch1 is a GTPase-deficient Cdc42-like protein with unusual binding characteristics and cellular effects. Exp. Cell Res. 299, 356–369.
(
10.1016/j.yexcr.2004.05.029
) -
Schmidt, A., and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609.
(
10.1101/gad.1003302
) -
Small, J. V., Stradal. T., Vignal, E., and Rottner, K. (2002). The lamellipodium: where motility begins. Trend Cell Biol. 12, 112–120.
(
10.1016/S0962-8924(01)02237-1
) -
Stramer, B., Wood, W., Galko, M. J., Redd, M. J., Jacinto, A., Parkhurst, S. M., and Martin, P. (2005). Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J. Cell Biol. 168, 567–573.
(
10.1083/jcb.200405120
) -
Tao, W., Pennica, D., Xu, L., Kalejta, R.F., and Levine, A. J. (2001). Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev. 15, 1796–1807.
(
10.1101/gad.894301
) -
Vignal, E., De Toledo, M., Comunale, F., Ladopoulou, A., Gauthier-Rouvière, C., Blangy, A., and Fort, P. (2000). Characterization of TCL, a new GTPase of the rho family related to TC10 and Ccdc42. J. Biol. Chem. 275, 36457–36464.
(
10.1074/jbc.M003487200
) - Watanabe, T., Wang, S., Noritake, J., Sato, K., Fukata, M., Takefuji, M., Nakagawa, M., Izumi, N., Akiyama, T., and Kaibuchi, K. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration Dev. Cell 7, 871–883.
-
Wennerberg, K., and Der, C. J. (2004). Rho-family GTPases: it's not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301–1312.
(
10.1242/jcs.01118
) -
Yasuda, S., Oceguera-Yanez, F., Kato, T., Okamoto, M., Yonemura, S., Terada, Y., Ishizaki, T., and Narumiya, S. (2004). Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428, 767–771.
(
10.1038/nature02452
) -
Yatohgo, T., Izumi, I., Kashiwagi, H., and Hayashi, M. (1988). Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct. Funct. 13, 281–292.
(
10.1247/csf.13.281
) -
Zondag, G. C., Evers, E. E., ten Klooster, J. P., Janssen, L., van der Kammen, R. A., and Collard, J. G. (2000). Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J. Cell Biol. 149, 775–778.
(
10.1083/jcb.149.4.775
) -
Zugasti, O., Rul, W., Roux, P., Peyssonnaux, C., Eychene, A., Franke, T. F., Fort, P., and Hibner, U. (2001). Raf-MEK-Erk cascade in anoikis is controlled by Rac1 and Cdc42 via Akt. Mol. Cell Biol. 21, 6706–6717.
(
10.1128/MCB.21.19.6706-6717.2001
)
Dates
Type | When |
---|---|
Created | 20 years, 1 month ago (July 13, 2005, 4:10 a.m.) |
Deposited | 6 years, 1 month ago (July 14, 2019, 6:09 a.m.) |
Indexed | 1 month, 1 week ago (July 14, 2025, 11:25 p.m.) |
Issued | 19 years, 10 months ago (Oct. 1, 2005) |
Published | 19 years, 10 months ago (Oct. 1, 2005) |
Published Print | 19 years, 10 months ago (Oct. 1, 2005) |
@article{Czuchra_2005, title={Cdc42 Is Not Essential for Filopodium Formation, Directed Migration, Cell Polarization, and Mitosis in Fibroblastoid Cells}, volume={16}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e05-01-0061}, DOI={10.1091/mbc.e05-01-0061}, number={10}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Czuchra, Aleksandra and Wu, Xunwei and Meyer, Hannelore and van Hengel, Jolanda and Schroeder, Timm and Geffers, Robert and Rottner, Klemens and Brakebusch, Cord}, year={2005}, month=oct, pages={4473–4484} }