Crossref journal-article
American Society for Cell Biology (ASCB)
Molecular Biology of the Cell (1076)
Abstract

Fish keratocytes can generate rearward directed traction forces within front portions of the lamellipodium, suggesting that a retrograde flow of actin may also occur here but this was not detected by previous photoactivation experiments. To investigate the relationship between retrograde flow and traction force generation, we have transfected keratocytes with GFP-actin and used fluorescent speckle microscopy, to observe speckle flow. We detected a retrograde flow of actin within the leading lamellipodium that is inversely proportional to both protrusion rate and cell speed. To observe the effect of reducing contractility, we treated transfected cells with ML7, a potent inhibitor of myosin II. Surprisingly, ML7 treatment led to an increase in retrograde flow rate, together with a decrease in protrusion and cell speed, but only in rapidly moving cells. In slower moving cells, retrograde flow decreased, whereas protrusion rate and cell speed increased. These results suggest that there are two mechanisms for producing retrograde flow. One involves slippage between the cytoskeleton and adhesions, that decreases traction force production. The other involves slippage between adhesions and the substratum, which increases traction force production. We conclude that a biphasic relationship exists between retrograde actin flow and adhesiveness in moving keratocytes.

Bibliography

Jurado, C., Haserick, J. R., & Lee, J. (2005). Slipping or Gripping? Fluorescent Speckle Microscopy in Fish Keratocytes Reveals Two Different Mechanisms for Generating a Retrograde Flow of Actin. Molecular Biology of the Cell, 16(2), 507–518.

Authors 3
  1. Carlos Jurado (first)
  2. John R. Haserick (additional)
  3. Juliet Lee (additional)
References 62 Referenced 187
  1. Anderson, K. I., and Cross, R. (2000). Contact dynamics during keratocyte motility.Curr. Biol.10, 253-260. (10.1016/S0960-9822(00)00357-2)
  2. Balaban, N. Q.et al.(2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates.Nat. Cell Biol.3, 466-472. (10.1038/35074532)
  3. Beningo, K. A., Dembo, M., Kaverina, I., Small, V., and Wang, Y.L. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts.J. Cell Biol.153, 881-887. (10.1083/jcb.153.4.881)
  4. Choquet, D., Felsenfeld, D. P., and Sheetz, M. P. (1997). Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages.Cell88, 39-48. (10.1016/S0092-8674(00)81856-5)
  5. Chrzanowska-Wodnicka, M., and Burridge, K. (1996). Rho-stimulated contractility drives the formation of stress fibers and focal adhesions.J. Cell Biol.133, 1403-1415. (10.1083/jcb.133.6.1403)
  6. Cramer, L. P. (1997). Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells.Front. Biosci.2, d260-d270.
  7. Davies, P. F., Robotewskyj, A., and Griem, M. L. (1993). Endothelial cell adhesion in real time.J. Clin. Invest.91, 2640-2652. (10.1172/JCI116503)
  8. Davies, P. F., Robotewskyj, A., and Griem, M. L. (1994). Quantitative studies of endothelial cell adhesion.J. Clin. Invest.93, 2031-2038. (10.1172/JCI117197)
  9. Delanoe-Ayari, H., Kurdi, R. A., Vallade, M., Gulino-Debrac, D., and Riveline, D. (2004). Membrane and acto-myosin tension promote clustering of adhesion proteins.Proc. Natl. Acad. Sci. USA101, 2229-2234. (10.1073/pnas.0304297101)
  10. Dembo, M., and Wang, Y.L. (1999). Stresses at the cell-to-substrate interface during locomotion of fibroblasts.Biophys. J.76, 2307-2316. (10.1016/S0006-3495(99)77386-8)
  11. DiMilla, P. A., Barbee, K., and Lauffenburger, D. A. (1991). Mathematical model for the effects of adhesion and mechanics on cell migration speed.Biophys. J.60, 15-37. (10.1016/S0006-3495(91)82027-6)
  12. DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M., and Lauffenburger, D. A. (1993). Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength.J. Cell Biol.122, 729-737. (10.1083/jcb.122.3.729)
  13. Doyle, A., and Lee, J. (2005). Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness.J. Cell Sci.(in press). (10.1242/jcs.01590)
  14. Doyle, A., Marganski, W., and Lee, J. (2004). Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes.J. Cell Sci.117, 2203-2214. (10.1242/jcs.01087)
  15. Doyle, A. D., and Lee, J. (2002). Simultaneous, real-time imaging of intracellular calcium and traction force production.Biotechniques33, 358-364. (10.2144/02332rr02)
  16. Euteneuer, U., and Schliwa, M. (1984). Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules.Nature310, 58-61. (10.1038/310058a0)
  17. Forscher, P., and Smith, S. J. (1988). Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone.J. Cell Biol.107, 1505-1516. (10.1083/jcb.107.4.1505)
  18. Fukui, Y., Kitanishi-Yumura, T., and Yumaura, S. (1999). Myosin-II independent F-actin flow contributes to cell locomotion inDictyostelium.J. Cell Sci.112, 877-886. (10.1242/jcs.112.6.877)
  19. Galbraith, C., and Sheetz, M. (1999). Keratocytes pull with similar forces on their dorsal and ventral surfaces.J. Cell Biol.147, 1313-1323. (10.1083/jcb.147.6.1313)
  20. Giannone, G., Jiang, G., Sutton, D. H., Critchley, D. R., and Sheetz, M. P. (2003). Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation.J. Cell Biol.163, 409-419. (10.1083/jcb.200302001)
  21. Grebecki, A. (1994). Membrane and cytoskeletal flow in motile cells with emphasis on the contribution of free-living amoeba.Int. Rev. Cytol.148, 37-79. (10.1016/S0074-7696(08)62405-5)
  22. Harris, A. K. (1994). Locomotion of tissue culture cells considered in relation to ameboid locomotion.Int. Rev. Cytol.150, 35-68. (10.1016/S0074-7696(08)61536-3)
  23. Harris, A. K., Wild, P., and Stopak, D. (1980). Silicone rubber substrata: a new wrinkle in the study of cell locomotion.Science208, 177-179. (10.1126/science.6987736)
  24. Heideman, S., and Buxbaum, R. (1998). Cell crawling: first the motor, now the transmission.J. Cell Biol.141, 1-4. (10.1083/jcb.141.1.1)
  25. 10.1091/mbc.10.12.4075
  26. Horwitz, A. F., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K. (1986). Interactions of plasma membrane fibronectin receptor with talin—a transmembrane linkage.Nature320, 5312-5313. (10.1038/320531a0)
  27. Jay, D. G. (2000). The clutch hypothesis revisited: ascribing the roles of actin-associated proteins in filopodial protrusion in the nerve growth cone.Review. J. Neurobiol.44, 114-125. (10.1002/1097-4695(200008)44:2<114::AID-NEU3>3.0.CO;2-8)
  28. Kaneko, K., Satoh, K., Masamune, A., Satoh, A., and Shomosegawa, T. (2002). Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines.Pancreas24, 34-41. (10.1097/00006676-200201000-00005)
  29. Leader, W. M., Stopak, D., and Harris, A. K. (1983). Increased contractile strength and tightened adhesions to the substratum result from reverse transformation of chinese hamster ovary cells by dibutyryl cyclic adenosine monophosphate.J. Cell Sci.64, 1-11.
  30. Lee, J., Ishihara, A., Oxford, G., Johnson, B., and Jacobson, K. (1999). Regulation of cell movement is mediated by stretch-activated calcium channels.Nature400, 382-386. (10.1038/22578)
  31. Lee, J., Ishihara, A., Theriot, J., and Jacobson, K. (1993). Principles of locomotion for simple-shaped cells.Nature362, 167-171. (10.1038/362167a0)
  32. Lee, J., and Jacobson, K. (1997). The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes.J. Cell Sci.110, 2833-2844. (10.1242/jcs.110.22.2833)
  33. Lee, J., Leonard, M., Oliver, T., Ishihara, A., and Jacobson, K. (1994). Traction forces generated by locomoting keratocytes.J. Cell Biol.127, 1957-1964. (10.1083/jcb.127.6.1957)
  34. Lin, C. H., Espreafico, E. M., and Mooseker, M. S. (1996). Myosin drives retrograde F-actin flow in neuronal growth cones.Neuron16, 769-782. (10.1016/S0896-6273(00)80097-5)
  35. Lin, C.H., and Forscher, P. (1995). Growth cone advance is inversely proportional to retrograde F-actin flow.Neuron14, 763-771. (10.1016/0896-6273(95)90220-1)
  36. Lin, C.H., Thompson, C. A., and Forscher, P. (1994). Cytoskeletal reorganization underlying growth cone motility.Curr. Opin. Neurobiol.4, 640-647. (10.1016/0959-4388(94)90004-3)
  37. Mallavarapu, A., and Mitchison, T. (1999). Regulating actin cytoskeleton assembly at filopodium tips controls their extension and retraction.J. Cell Biol.146, 1097-1106. (10.1083/jcb.146.5.1097)
  38. Marganski, W. A., Dembo, M., and Wang, Y.L. (2003). Measurements of cell-generated deformations on flexible substrata using correlation-based optical flow.Methods Enzymol.161, 197-211. (10.1016/S0076-6879(03)61012-8)
  39. Mitchison, T., and Kirschner, M. (1988). Cytoskeletal dynamics and nerve growth.Neuron1, 761-772. (10.1016/0896-6273(88)90124-9)
  40. Moazzam, F., DeLano, F. A., Zweifach, B. W., and Schmid-Schonbein, G. W. (1997). The leukocyte response to fluid shear stress.Proc. Natl. Acad. Sci. USA94, 5338-5343. (10.1073/pnas.94.10.5338)
  41. Munevar, S., Wang, Y.L., and Dembo, M. (2001). Traction force microscopy in normal and H-ras transformed 3T3 fibroblasts.Biophys. J.80, 1744-1757. (10.1016/S0006-3495(01)76145-0)
  42. Oliver, T., Dembo, M., and Jacobson, K. (1999). Separation of propulsive and adhesive traction stresses in locomoting keratocytes.J. Cell Biol.145, 589-604. (10.1083/jcb.145.3.589)
  43. Paddock, S. W. (1989). Tandem scanning reflected light microscopy of cell-substratum adhesions and stress fibers in Swiss 3T3 cells.J. Cell Sci.93, 142-146.
  44. Paku, S., Tovari, J., Lorincz, Z., Timar, F., Dome, B., Kopper, L., Raz, A., and Timar, J. (2003). Adhesion dynamics and cytoskeletal structure of gliding human fibrosarcoma cells: a hypothetical model of cell migration.Exp. Cell Res.290, 246-253. (10.1016/S0014-4827(03)00334-3)
  45. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenberger, D. A., and Horwitz, A. F. (1997). Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness.Nature385, 537-540. (10.1038/385537a0)
  46. Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., and Bershadsky, A. (2001). Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia-dependent and ROCK-independent mechanism.J. Cell Biol.153, 1175-1185. (10.1083/jcb.153.6.1175)
  47. Roy, P., Petroll, W. M., Cavanagh, H. D., and Jester, J. V. (1999). Exertion of tractional force requires the coordinated up-regulation of cell contractility and adhesion.Cell Motil. Cytoskelet.43, 23-43. (10.1002/(SICI)1097-0169(1999)43:1<23::AID-CM3>3.0.CO;2-M)
  48. Royal, D., Royal, M., Italiano, J., Roberts, T., and Soll, D. R. (1995). InAscarissperm pseudopods, MSP fibers move proximally at a constant rate regardless of the forward rate of cellular translocation.Cell Motil. Cytoskelet.31, 241-253. (10.1002/cm.970310307)
  49. Saitoh, M., Ishikawa, T., Matsushima, S., Naka, M., and Hidaka, H. (1987). Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase.J. Biol. Chem.262, 7796-7801. (10.1016/S0021-9258(18)47638-7)
  50. Smilenov, L. B., Mikhailov, A., Pelham, R. J., Marcantonio, E. E., and Gunderson, G. G. (1999). Focal adhesion motility revealed in stationary fibroblasts.Science286, 1172-1174. (10.1126/science.286.5442.1172)
  51. Suter, D., and Forscher, P. (2001). Transmission of growth cone traction force through apCAM-cytoskeletal linkages is regulated by Src family tyrosine kinase activity.J. Cell Biol.155, 427-438. (10.1083/jcb.200107063)
  52. Suter, D. M., Errante, L. D., Belotserkovsky, V., and Forscher, P. (1998). The immunoglobulin superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling.J. Cell Biol.141, 227-240. (10.1083/jcb.141.1.227)
  53. Suter, D. M., and Forscher, P. (1998). An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance.Curr. Opin. Neurobiol.8, 106-116. (10.1016/S0959-4388(98)80014-7)
  54. Suter, D. M., and Forscher, P. (2000). Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance.J. Neurobiol.44, 97-113. (10.1002/1097-4695(200008)44:2<97::AID-NEU2>3.0.CO;2-U)
  55. Svitkina, T. M., Verkhovsky, A. B., Quade, K.M.M., and Borisy, G. C. (1997). Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation.J. Cell Biol.139, 397-415. (10.1083/jcb.139.2.397)
  56. Sydor, A. M., Su, A. L., Wang, F. S., Xu, A., and Jay, D. G. (1996). Talin and vinculin play dintinct roles in filopodial motility in neuronal growth cones.J. Cell Biol.134, 1197-1208. (10.1083/jcb.134.5.1197)
  57. Theriot, J. A., and Mitchison, T. J. (1991). Actin microfilament dynamcs in locomoting cells.Nature352, 126-131. (10.1038/352126a0)
  58. Theriot, J. A., and Mitchison, T. J. (1992). Comparison of actin and cell surface dynamics in motile fibroblasts.J. Cell Biol.118, 367-377. (10.1083/jcb.119.2.367)
  59. Verkhovsky, A. B., Svitkina, T. M., and Borisy, G. G. (1999). Self-polarization and directional motility of cytoplasm.Curr. Biol.9, 11-20. (10.1016/S0960-9822(99)80042-6)
  60. Wang, Y.L. (1985). Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling.J. Cell Biol.101, 597-602. (10.1083/jcb.101.2.597)
  61. Watanabe, N., and Mitchison, T. J. (2002). Single-molecule speckle analysis of actin filament turnover in lamellipodia.Science295, 1083-1086. (10.1126/science.1067470)
  62. Waterman-Storer, C. M., Desai, A., Bulinski, J. C., and Salmon, E. D. (1998). Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells.Curr. Biol.8, 1227-1230. (10.1016/S0960-9822(07)00515-5)
Dates
Type When
Created 20 years, 9 months ago (Nov. 17, 2004, 8:25 p.m.)
Deposited 4 years, 2 months ago (June 28, 2021, 7:30 p.m.)
Indexed 1 month ago (July 30, 2025, 10:27 a.m.)
Issued 20 years, 7 months ago (Feb. 1, 2005)
Published 20 years, 7 months ago (Feb. 1, 2005)
Published Print 20 years, 7 months ago (Feb. 1, 2005)
Funders 0

None

@article{Jurado_2005, title={Slipping or Gripping? Fluorescent Speckle Microscopy in Fish Keratocytes Reveals Two Different Mechanisms for Generating a Retrograde Flow of Actin}, volume={16}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e04-10-0860}, DOI={10.1091/mbc.e04-10-0860}, number={2}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Jurado, Carlos and Haserick, John R. and Lee, Juliet}, year={2005}, month=feb, pages={507–518} }