Abstract
The tumor suppressor protein p53 mediates stress-induced growth arrest or apoptosis and plays a major role in safeguarding genome integrity. In response to DNA damage, p53 can be modified at multiple sites by phosphorylation and acetylation. We report on the characterization of p53 C-terminal phosphorylation by CHK1 and CHK2, two serine/threonine (Ser/Thr) protein kinases, previously implicated in the phosphorylation of the p53 N terminus. Using tryptic phosphopeptide mapping, we have identified six additional CHK1 and CHK2 sites residing in the final 100 amino acids of p53. Phosphorylation of at least three of these sites, Ser366, Ser378, and Thr387, was induced by DNA damage, and the induction at Ser366 and Thr387 was abrogated by small interfering RNA targeting chk1 and chk2. Furthermore, mutation of these phosphorylation sites has a different impact on p53 C-terminal acetylation and on the activation of p53-targeted promoters. Our results demonstrate a possible interplay between p53 C-terminal phosphorylation and acetylation, and they provide an additional mechanism for the control of the activity of p53 by CHK1 and CHK2.
References
54
Referenced
148
-
Ahn, J., Urist, M., and Prives, C. (2003). Questioning the role of checkpoint kinase 2 in the p53 DNA damage response.J. Biol. Chem.278, 20480–20489.
(
10.1074/jbc.M213185200
) -
Appella, E., and Anderson, C. W. (2001). Post-translational modifications and activation of p53 by genotoxic stresses.Eur. J. Biochem.268, 2764–2772.
(
10.1046/j.1432-1327.2001.02225.x
) -
Banin, S.et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage.Science281, 1674–1677.
(
10.1126/science.281.5383.1674
) -
Barlev, N. A., Liu, L., Chehab, N. H., Mansfield, K., Harris, K. G., Halazonetis, T. D., and Berger, S. L. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases.Mol. Cell8, 1243–1254.
(
10.1016/S1097-2765(01)00414-2
) -
Bartek, J., and Lukas, J. (2003). chk1 and Chk2 kinases in checkpoint control and cancer.Cancer Cell3, 421–429.
(
10.1016/S1535-6108(03)00110-7
) -
Boyle, W. J., van der Geer, P., and Hunter, T. (1991). Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates.Methods Enzymol.201, 110–152.
(
10.1016/0076-6879(91)01013-R
) -
Brooks, C. L., and Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 activation.Curr. Opin. Cell Biol.15, 164–171.
(
10.1016/S0955-0674(03)00003-6
) -
Bulavin, D. V., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E., and Fornace, A. J., Jr. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation.EMBO J.18, 6845–6854.
(
10.1093/emboj/18.23.6845
) -
Bushmann, T.et al. (2001). Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress.Mol. Cell. Biol.21, 2743–2754.
(
10.1128/MCB.21.8.2743-2754.2001
) -
Canman, C. E., Lim, D.S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B., and Siliciano, J. D. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53.Science281, 1677–1679.
(
10.1126/science.281.5383.1677
) -
Chehab, N. H., Malikzay, A., Appel, M., and Halazonetis, T. D. (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53.Genes Dev.14, 278–288.
(
10.1101/gad.14.3.278
) -
Chène, P. (2003). Inhibiting the p53-MDM2 interaction: an important target for cancer therapy.Nat. Rev. Cancer3, 102–109.
(
10.1038/nrc991
) -
Di Como, C. J., Gaiddon, C., and Prives, C. (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells.Mol. Cell. Biol.19, 1438–1449.
(
10.1128/MCB.19.2.1438
) -
Dornan, D., Shimizu, H., Perkins, N. D., and Hupp, T. R. (2003). DNA-dependent acetylation of p53 by the transcription coactivator p300.J. Biol. Chem.278, 13431–13441.
(
10.1074/jbc.M211460200
) -
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature411, 494–498.
(
10.1038/35078107
) -
Falck, J., Mailand, N., Suljuasen, R. G., Bartek, J., and Lukas, J. (2001). The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis.Nature410, 842–847.
(
10.1038/35071124
) -
Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain.Cell90, 595–606.
(
10.1016/S0092-8674(00)80521-8
) -
Harms, K., Nozell, S., and Chen, X. (2004). The common and distinct target genes of the p53 family transcription factors.Cell. Mol. Life Sci.61, 822–842.
(
10.1007/s00018-003-3304-4
) -
Hirao, A.et al. (2002). Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner.Mol. Cell. Biol.22, 6521–6532.
(
10.1128/MCB.22.18.6521-6532.2002
) -
Hirao, A., Kong, Y. Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S. J., and Mak, T. W. (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2.Science287, 1824–1827.
(
10.1126/science.287.5459.1824
) -
Rhind, N., and Russell, P. (2000) Chk1 and Cds1, linchpins of the DNA damage and replication checkpoint pathways.J. Cell Sci.113, 3889–3896.
(
10.1242/jcs.113.22.3889
) -
Holmberg, C. I., Tran, S.E.F., Eriksson, J. E., and Sistonen, L. (2002). Multisite phosphorylation provides sophisticated regulation of transcription factors.Trends Biochem. Sci.27, 619–627.
(
10.1016/S0968-0004(02)02207-7
) -
Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, M. H., Appella, E., and Yao, T.P. (2001). p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2.EMBO J.20, 1331–1340.
(
10.1093/emboj/20.6.1331
) -
Jallepalli, P. V., Lengauer, C., Vogelstein, B., and Bunz, F. (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells.J. Biol. Chem.278, 20475–20479.
(
10.1074/jbc.M213159200
) -
Kar, S., Sakaguchi, K., Shimohigashi, Y., Samaddar, S., Banerjee, R., Basu, G., Swaminathan, V., Kundu, T. K., and Roy, S. (2002). Effect of phosphorylation on the structure and fold of transactivation domain of p53.J. Biol. Chem.277, 15579–15585.
(
10.1074/jbc.M106915200
) -
Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., and Fornace, A. J., Jr. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and Gadd45 is defective in ataxia-telangiectasia.Cell71, 587–597.
(
10.1016/0092-8674(92)90593-2
) -
Kawai, H., Nie, L., Wiederschain, D., and Yuan, Z.M. (2001). Dual role of p300 in the regulation of p53 stability.J. Biol. Chem.276, 45928–45932.
(
10.1074/jbc.M107770200
) -
Khanna, K. K., Keating, K. E., Kozlov, S., Scott, S., Gatei, M., Hobson, K., Taya, Y., Gabrielli, B., Chan, D., Lees-Miller, S. P., and Lavin, M. F. (1998). ATM associates with and phosphorylates p53, Mapping the region of interaction.Nat. Genet.20, 398–400.
(
10.1038/3882
) -
Ko, L. J., and Prives, C. (1996). p53, puzzle and paradigm.Genes Dev.10, 1054–1072.
(
10.1101/gad.10.9.1054
) -
Lambert, P. F., Kashanchi, F., Radonovich, M. F., Shiekhattar, R., and Brady, J. N. (1998). Phosphorylation of p53 serine 15 increases interaction with CBP.J. Biol. Chem.273, 33048–33053.
(
10.1074/jbc.273.49.33048
) -
Li, M., Luo, J., Brooks, C. L., and Gu, W. (2002). Acetylation of p53 inhibits its ubiquitination by Mdm2.J. Biol. Chem.277, 50607–50611.
(
10.1074/jbc.C200578200
) -
Liu, L., Scolnick, M., Trievel, R. C., Zhang, H. B., Marmorstein, R., Halazonetis, T. D., and Berger, S. L. (1999). p53 sites acetylatedin vitroby PCAF and p300 are acetylatedin vivoin response to DNA damage.Mol. Cell. Biol.19, 1202–1209.
(
10.1128/MCB.19.2.1202
) -
Lu, X., and Lane, D. P. (1993). Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes?Cell75, 765–778.
(
10.1016/0092-8674(93)90496-D
) -
Mailand, N., Falck, J., Lukas, C., Syljuaswn, R. G., Welcker, M., Bartek, J., and Lukas, J. (2000). Rapid destruction of human Cdc25A in response to DNA damage.Science288, 1425–1429.
(
10.1126/science.288.5470.1425
) -
Meek, D. W. (1998). Multisite phosphorylation and the integration of stress signals at p53.Cell. Signal.10, 159–166.
(
10.1016/S0898-6568(97)00119-8
) -
Oda, K.et al. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser46-phosphorylated p53.Cell102, 849–862.
(
10.1016/S0092-8674(00)00073-8
) -
Olivier, M., Eeles, R., Hollstein, M., Khan, M. A., Harris, C. C., and Hainaut, P. (2002). The IARC TP53 database: new online mutation analysis and recommendations to users.Hum. Mutat.19, 607–614.
(
10.1002/humu.10081
) -
Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade.Genes Dev.12, 2831–2841.
(
10.1101/gad.12.18.2831
) - Sarkaria, J. N., Busby, E. C., Tibbetts, R. S., Roos, P., Taya, Y., Karnitz, L. M., and Abraham, R. T. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine.Cancer Res.59, 4375–4382.
- Scolnick, D. M., Chehab, N. H., stavridi, E. S., Lien, M. C., Caruso, L., Moran, E., Berger, S. L., and Halazonetis, T. D. (1997). CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein.Cancer Res.57, 3693–3696.
-
Shieh, S.Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites.Genes Dev.14, 289–300.
(
10.1101/gad.14.3.289
) -
Shieh, S.Y., Ideda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2.Cell91, 325–334.
(
10.1016/S0092-8674(00)80416-X
) -
Shieh, S.Y., Taya, Y., and Prives, C. (1999). DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization.EMBO J.18,1815–1823.
(
10.1093/emboj/18.7.1815
) -
Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nat. Rev.Cancer3, 155–168.
(
10.1038/nrc1011
) -
Sluss, H. K., Armata, H., Gallant, J., and Jones, S. N. (2004). Phosphorylation of Serine 18 regulates distinct p53 functions in mice.Mol. Cell. Biol.24, 976–984.
(
10.1128/MCB.24.3.976-984.2004
) -
Szak, S. T., Mays, D., and Peitenpol, J. A. (2001). Kinetics of p53 binding to promoter sitesin vivo.Mol. Cell. Biol.21, 3375–3386.
(
10.1128/MCB.21.10.3375-3386.2001
) -
Takai, H.et al. (2002). Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription.EMBO J.21, 5195–5205.
(
10.1093/emboj/cdf506
) -
Tibbetts, R. S., Brunbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S.Y., Prives, C., and Abraham, R. T. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53.Genes Dev.13, 152–157.
(
10.1101/gad.13.2.152
) -
Unger, T., Juven-Gershon, T., Moallem, I., Berger, M., Sionov, R. V., Lozano, G. Oren, M., and Haupt, Y. (1999). Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2.EMBO J.18, 1805–1814.
(
10.1093/emboj/18.7.1805
) -
Vousden, K. H. (2002). Activation of the p53 tumor suppressor protein.Biochim. Biophys. Acta1602, 47–59.
(
10.1016/S0304-419X(02)00035-5
) -
Vousden, K. H., and Lu, X. (2002). Live or let die: the cell's response to p53.Nat. Rev. Cancer2, 594–604.
(
10.1038/nrc864
) -
Waterman, M.J.F., Stavridi, E. S., Waterman, J.L.F., and Halazonetis, T. D. (1998). ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins.Nat. Genet.19, 175–178.
(
10.1038/542
) -
Wu, Z., Earle, J., Saito, S., Anderson, C. W., Appella, E., and Xu, Y. (2002). Mutation of mouse p53 Ser23 and the response to DNA damage.Mol. Cell. Biol.22, 2441–2449.
(
10.1128/MCB.22.8.2441-2449.2002
) -
Xu, Y. (2003). Regulation of p53 responses by post-translational modifications.Cell Death Differ.10, 400–403.
(
10.1038/sj.cdd.4401182
)
Dates
Type | When |
---|---|
Created | 20 years, 7 months ago (Jan. 19, 2005, 8:33 p.m.) |
Deposited | 2 years, 3 months ago (May 1, 2023, 2:15 p.m.) |
Indexed | 3 weeks, 3 days ago (Aug. 6, 2025, 9:16 a.m.) |
Issued | 20 years, 4 months ago (April 1, 2005) |
Published | 20 years, 4 months ago (April 1, 2005) |
Published Print | 20 years, 4 months ago (April 1, 2005) |
@article{Ou_2005, title={p53 C-Terminal Phosphorylation by CHK1 and CHK2 Participates in the Regulation of DNA-Damage-induced C-Terminal Acetylation}, volume={16}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e04-08-0689}, DOI={10.1091/mbc.e04-08-0689}, number={4}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Ou, Yi-Hung and Chung, Pei-Han and Sun, Te-Ping and Shieh, Sheau-Yann}, year={2005}, month=apr, pages={1684–1695} }