Crossref journal-article
American Society for Cell Biology (ASCB)
Molecular Biology of the Cell (1076)
Abstract

Aberrant secreted proteins can be destroyed by ER-associated protein degradation (ERAD), and a prominent, medically relevant ERAD substrate is the cystic fibrosis transmembrane conductance regulator (CFTR). To better define the chaperone requirements during CFTR maturation, the protein was expressed in yeast. Because Hsp70 function impacts CFTR biogenesis in yeast and mammals, we first sought ER-associated Hsp40 cochaperones involved in CFTR maturation. Ydj1p and Hlj1p enhanced Hsp70 ATP hydrolysis but CFTR degradation was slowed only in yeast mutated for both YDJ1 and HLJ1, suggesting functional redundancy. In contrast, CFTR degradation was accelerated in an Hsp90 mutant strain, suggesting that Hsp90 preserves CFTR in a folded state, and consistent with this hypothesis, Hsp90 maintained the solubility of an aggregation-prone domain (NBD1) in CFTR. Soluble ERAD substrate degradation was unaffected in the Hsp90 or the Ydj1p/Hlj1p mutants, and surprisingly CFTR degradation was unaffected in yeast mutated for Hsp90 cochaperones. These results indicate that Hsp90, but not the Hsp90 complex, maintains CFTR structural integrity, whereas Ydj1p/Hlj1p catalyze CFTR degradation.

Bibliography

Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T., & Brodsky, J. L. (2004). Distinct Roles for the Hsp40 and Hsp90 Molecular Chaperones during Cystic Fibrosis Transmembrane Conductance Regulator Degradation in Yeast. Molecular Biology of the Cell, 15(11), 4787–4797.

Authors 5
  1. Robert T. Youker (first)
  2. Peter Walsh (additional)
  3. Traude Beilharz (additional)
  4. Trevor Lithgow (additional)
  5. Jeffrey L. Brodsky (additional)
References 96 Referenced 138
  1. Adams, A., Gottschling, D., Kaiser, C., and Stearns, T. (1997).Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  2. Barlowe, C. (2003). Signals for COPII-dependent export from the ER: what's the ticket out?Trends Cell Biol.13, 295-300.
  3. Bays, N.W., Gardner, R.G., Seelig, L.P., Joazeiro, C.A., and Hampton, R.Y. (2001). Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation.Nat. Cell Biol.3, 24-29. (10.1038/35050524)
  4. Becker, J., Walter, W., Yan, W., and Craig, E.A. (1996). Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo.Mol. Cell. Biol.16, 4378-4386. (10.1128/MCB.16.8.4378)
  5. Beilharz, T., Egan, B., Silver, P.A., Hofmann, K., and Lithgow, T. (2003). Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins inSaccharomyces cerevisiae.J. Biol. Chem.278, 8219-8223. (10.1074/jbc.M212725200)
  6. Beilharz, T., Suzuki, C.K., and Lithgow, T. (1998). A toxic fusion protein accumulating between the mitochondrial membranes inhibits protein assembly in vivo.J. Biol. Chem.273, 35268-35272. (10.1074/jbc.273.52.35268)
  7. Bohen, S.P. (1998). Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins.Mol. Cell. Biol.18, 3330-3339. (10.1128/MCB.18.6.3330)
  8. Bohen, S.P., and Yamamoto, K.R. (1993). Isolation of Hsp90 mutants by screening for decreased steroid receptor function.Proc. Natl. Acad. Sci. USA90, 11424-11428. (10.1073/pnas.90.23.11424)
  9. Borkovich, K.A., Farrelly, F.W., Finkelstein, D.B., Taulien, J., and Lindquist, S. (1989). hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures.Mol. Cell. Biol.9, 3919-3930. (10.1128/MCB.9.9.3919)
  10. Brodsky, J.L., Werner, E.D., Dubas, M.E., Goeckeler, J.L., Kruse, K.B., and McCracken, A.A. (1999). The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct.J. Biol. Chem.274, 3453-3460. (10.1074/jbc.274.6.3453)
  11. Buchner, J. (1996). Supervising the fold: functional principles of molecular chaperones.FASEB J.10, 10-19. (10.1096/fasebj.10.1.8566529)
  12. Burri, L., and Lithgow, T. (2004). A complete set of SNAREs in yeast.Traffic5, 45-52. (10.1046/j.1600-0854.2003.00151.x)
  13. Burri, L., Varlamov, O., Doege, C.A., Hofmann, K., Beilharz, T., Rothman, J.E., Sollner, T.H., and Lithgow, T. (2003). A SNARE required for retrograde transport to the endoplasmic reticulum.Proc. Natl. Acad. Sci. USA100, 9873-9877. (10.1073/pnas.1734000100)
  14. Caplan, A.J. (1999). Hsp90's secrets unfold: new insights from structural and functional studies.Trends Cell Biol.9, 262-268. (10.1016/S0962-8924(99)01580-9)
  15. Caplan, A.J., Cyr, D.M., and Douglas, M.G. (1992). YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism.Cell71, 1143-1155. (10.1016/S0092-8674(05)80063-7)
  16. Chang, H.C., Nathan, D.F., and Lindquist, S. (1997). In vivo analysis of the Hsp90 cochaperone Sti1 (p60).Mol. Cell. Biol.17, 318-325. (10.1128/MCB.17.1.318)
  17. Cheng, S.H., Gregory, R.J., Marshall, J., Paul, S., Souza, D.W., White, G.A., O'Riordan, C.R., and Smith, A.E. (1990). Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis.Cell63, 827-834. (10.1016/0092-8674(90)90148-8)
  18. Connell, P., Ballinger, C.A., Jiang, J., Wu, Y., Thompson, L.J., Höhfeld, J., and Patterson, C. (2001). The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins.Nat. Cell Biol.3, 93-96. (10.1038/35050618)
  19. Corsi, A.K., and Schekman, R. (1997). The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon inSaccharomyces cerevisiae.J. Cell Biol.137, 1483-1493. (10.1083/jcb.137.7.1483)
  20. Costanzo, M.C.et al.(2001). YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information.Nucleic Acids Res.29, 75-79. (10.1093/nar/29.1.75)
  21. Cox, M.B., and Miller, C.A., 3rd. (2002). The p23 co-chaperone facilitates dioxin receptor signaling in a yeast model system.Toxicol. Lett.129, 13-21. (10.1016/S0378-4274(01)00465-9)
  22. Cyr, D.M., Lu, X., and Douglas, M.G. (1992). Regulation of Hsp70 function by a eukaryotic DnaJ homolog.J. Biol. Chem.267, 20927-20931. (10.1016/S0021-9258(19)36777-8)
  23. Deak, P.M., and Wolf, D.H. (2001). Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation.J. Biol. Chem.276, 10663-10669. (10.1074/jbc.M008608200)
  24. Donze, O., and Picard, D. (1999). Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2.Mol. Cell. Biol.19, 8422-8432. (10.1128/MCB.19.12.8422)
  25. Ellgaard, L., Molinari, M., and Helenius, A. (1999). Setting the standards: quality control in the secretory pathway.Science286, 1882-1888. (10.1126/science.286.5446.1882)
  26. Fang, Y., Fliss, A.E., Rao, J., and Caplan, A.J. (1998). SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins.Mol. Cell. Biol.18, 3727-3734. (10.1128/MCB.18.7.3727)
  27. Farinha, C.M., Nogueira, P., Mendes, F., Penque, D., and Amaral, M.D. (2002). The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.Biochem. J.366, 797-806. (10.1042/bj20011717)
  28. Fewell, S.W., Travers, K.J., Weissman, J.S., and Brodsky, J.L. (2001). The action of molecular chaperones in the early secretory pathway.Annu. Rev. Genet.35, 149-191. (10.1146/annurev.genet.35.102401.090313)
  29. Fliss AE, Benzeno S, Rao J, Caplan AJ. (2000). Control of estrogen receptor ligand binding by Hsp90.J. Steroid. Biochem. Mol. Biol.72, 223-230. (10.1016/S0960-0760(00)00037-6)
  30. Fu, L., and Sztul, E. (2003). Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator.J. Cell Biol.160, 157-163. (10.1083/jcb.200210086)
  31. Fujiki, Y., Hubbard, A.L., Fowler, S., and Lazarow, P.B. (1982). Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum.J. Cell Biol.93, 97-102. (10.1083/jcb.93.1.97)
  32. Fuller, W., and Cuthbert, A.W. (2000). Post-translational disruption of the delta F508 cystic fibrosis transmembrane conductance regulator (CFTR)-molecular chaperone complex with geldanamycin stabilizes delta F508 CFTR in the rabbit reticulocyte lysate.J. Biol. Chem.275, 37462-37468. (10.1074/jbc.M006278200)
  33. Gelman, M.S., Kannegaard, E.S., and Kopito, R.R. (2002). A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator.J. Biol. Chem.277, 11709-11714. (10.1074/jbc.M111958200)
  34. 10.1091/mbc.e04-01-0024
  35. 10.1091/mbc.02-04-0051
  36. Gusarova, V., Caplan, A.J., Brodsky, J.L., and Fisher, E.A. (2001). Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70.J. Biol. Chem.276, 24891-24900. (10.1074/jbc.M100633200)
  37. Hill, K., and Cooper, A.A. (2000). Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system.EMBO J.19, 550-561. (10.1093/emboj/19.4.550)
  38. Hiller, M.M., Finger, A., Schweiger, M., and Wolf, D.H. (1996). ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway.Science273, 1725-1728. (10.1126/science.273.5282.1725)
  39. Höhfeld, J. (1998). Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights.Biol. Chem.379, 269-274.
  40. Höhfeld, J., Cyr, D.M., and Patterson, C. (2001). From the cradle to the grave: molecular chaperones that may choose between folding and degradation.EMBO Rep.2, 885-890. (10.1093/embo-reports/kve206)
  41. Huang, P., Stroffekova, K., Cuppoletti, J., Mahanty, S.K., and Scarborough, G.A. (1996). Functional expression of the cystic fibrosis transmembrane conductance regulator in yeast.Biochim. Biophys. Acta1281, 80-90. (10.1016/0005-2736(96)00032-6)
  42. Huyer, G., Piluek, W. F., Fansler, Z., Kreft, S., Hochstrasser, M., Brodsky, J.L., and Michaelis, S. (2004). Distinct machinery is required inSaccharomyces cerevisiaefor the endoplasmic reticulum-associated degradation of a multi-spanning membrane protein and a soluble lumenal protein.J. Biol. Chem.279, 38369-38378. (10.1074/jbc.M402468200)
  43. Imamura, T.et al.(1998). Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome.J. Biol. Chem.273, 11183-11188. (10.1074/jbc.273.18.11183)
  44. Jakob, U., Meyer, I., Bugl, H., Andre, S., Bardwell, J.C., and Buchner, J. (1995). Structural organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations on structure and function.J. Biol. Chem.270, 14412-14419. (10.1074/jbc.270.24.14412)
  45. Jensen, T.J., Loo, M.A., Pind, S., Williams, D.B., Goldberg, A.L., and Riordan, J.R. (1995). Multiple proteolytic systems, including the proteasome, contribute to CFTR processing.Cell83, 129-135. (10.1016/0092-8674(95)90241-4)
  46. Johnson, B.D., Schumacher, R.J., Ross, E.D., and Toft, D.O. (1998). Hop modulates Hsp70/Hsp90 interactions in protein folding.J. Biol. Chem.273, 3679-3686. (10.1074/jbc.273.6.3679)
  47. Kaufman, R.J. (1999). Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls.Genes Dev.13, 1211-1233. (10.1101/gad.13.10.1211)
  48. Kiser, G.L., Gentzsch, M., Kloser, A.K., Balzi, E., Wolf, D.H., Goffeau, A., and Riordan, J.R. (2001). Expression and degradation of the cystic fibrosis transmembrane conductance regulator in Saccharomyces cerevisiae.Arch. Biochem. Biophys.390, 195-205. (10.1006/abbi.2001.2385)
  49. Kostova, Z., and Wolf, D.H. (2003). For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection.EMBO J.22, 2309-2317. (10.1093/emboj/cdg227)
  50. Lawson, B., Brewer, J.W., and Hendershot, L.M. (1998). Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway.J. Cell. Physiol.174, 170-178. (10.1002/(SICI)1097-4652(199802)174:2<170::AID-JCP4>3.0.CO;2-L)
  51. 10.1091/mbc.e03-07-0480
  52. Lewis, H.A.et al.(2004). Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.EMBO J.23, 282-293. (10.1038/sj.emboj.7600040)
  53. Liu, X.D., Morano, K.A., and Thiele, D.J. (1999). The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone.J. Biol. Chem.274, 26654-26660. (10.1074/jbc.274.38.26654)
  54. Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification inSaccharomyces cerevisiae.Yeast14, 953-961. (10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U)
  55. Loo, M.A., Jensen, T.J., Cui, L., Hou, Y., Chang, X.B., and Riordan, J.R. (1998). Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.EMBO J.17, 6879-6887. (10.1093/emboj/17.23.6879)
  56. McClellan, A.J., and Brodsky, J.L. (2000). Mutation of the ATP-binding pocket of SSA1 indicates that a functional interaction between Ssa1p and Ydj1p is required for post-translational translocation into the yeast endoplasmic reticulum.Genetics156, 501-512. (10.1093/genetics/156.2.501)
  57. McCracken, A.A., and Brodsky, J.L. (2003). Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD).Bioessays25, 868-877. (10.1002/bies.10320)
  58. Meacham, G.C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D.M. (1999). The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis.EMBO J.18, 1492-1505. (10.1093/emboj/18.6.1492)
  59. Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M., and Cyr, D.M. (2001). The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.Nat. Cell Biol.3, 100-105. (10.1038/35050509)
  60. Minami, M., Nakamura, M., Emori, Y., and Minami, Y. (2001). Both the N- and C-terminal chaperone sites of Hsp90 participate in protein refolding.Eur. J. Biochem.268, 2520-2524. (10.1046/j.1432-1327.2001.02145.x)
  61. Nakano, A., Brada, D., and Schekman, R. (1988). A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast.J. Cell Biol.107, 851-863. (10.1083/jcb.107.3.851)
  62. Nathan, D.F., and Lindquist, S. (1995). Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase.Mol. Cell. Biol.15, 3917-3925. (10.1128/MCB.15.7.3917)
  63. Nicolet, C.M., and Craig, E.A. (1989). Isolation and characterization of STI1, a stress-inducible gene fromSaccharomyces cerevisiae.Mol. Cell. Biol.9, 3638-3646. (10.1128/MCB.9.9.3638)
  64. Nishikawa, S.I., Fewell, S.W., Kato, Y., Brodsky, J.L., and Endo, T. (2001). Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation.J. Cell Biol.153, 1061-1070. (10.1083/jcb.153.5.1061)
  65. Pind, S., Riordan, J.R., and Williams, D.B. (1994). Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator.J. Biol. Chem.269, 12784-12788. (10.1016/S0021-9258(18)99944-8)
  66. Plemper, R.K., Bohmler, S., Bordallo, J., Sommer, T., and Wolf, D.H. (1997). Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation.Nature388, 891-895. (10.1038/42276)
  67. Plemper, R.K., Egner, R., Kuchler, K., and Wolf, D.H. (1998). Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome.J. Biol. Chem.273, 32848-32856. (10.1074/jbc.273.49.32848)
  68. Pratt, W.B., and Toft, D.O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery.Exp. Biol. Med. (Maywood)228, 111-133. (10.1177/153537020322800201)
  69. Qu, B.H., Strickland, E.H., and Thomas, P.J. (1997). Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding.J. Biol. Chem.272, 15739-15744. (10.1074/jbc.272.25.15739)
  70. Qu, B.H., and Thomas, P.J. (1996). Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway.J. Biol. Chem.271, 7261-7264. (10.1074/jbc.271.13.7261)
  71. Richter, K., and Buchner, J. (2001). Hsp90, chaperoning signal transduction.J. Cell. Physiol.188, 281-290. (10.1002/jcp.1131)
  72. Romisch, K. (1999). Surfing the Sec61 channel: bidirectional protein translocation across the ER membrane.J. Cell Sci.112, 4185-4191. (10.1242/jcs.112.23.4185)
  73. Scheibel, T., Weikl, T., and Buchner, J. (1998). Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence.Proc. Natl. Acad. Sci. USA95, 1495-1499. (10.1073/pnas.95.4.1495)
  74. Schneider, C., Sepp-Lorenzino, L., Nimmesgern, E., Ouerfelli, O., Danishefsky, S., Rosen, N., and Hartl, F.U. (1996). Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90.Proc. Natl. Acad. Sci. USA93, 14536-14541. (10.1073/pnas.93.25.14536)
  75. Shirayama, M., Kawakami, K., Matsui, Y., Tanaka, K., and Toh-e, A. (1993). MSI3, a multicopy suppressor of mutants hyperactivated in the RAS-cAMP pathway, encodes a novel HSP70 protein ofSaccharomyces cerevisiae.Mol. Gen. Genet.240, 323-332. (10.1007/BF00280382)
  76. Smith, D.F. (1998). Sequence motifs shared between chaperone components participating in the assembly of progesterone receptor complexes.Biol. Chem.379, 283-288.
  77. 10.1091/mbc.3.2.129
  78. Strickland, E., Qu, B.H., Millen, L., and Thomas, P.J. (1997). The molecular chaperone Hsc70 assists the in vitro folding of the N-terminal nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator.J. Biol. Chem.272, 25421-25424. (10.1074/jbc.272.41.25421)
  79. Sullivan, C.S., Tremblay, J.D., Fewell, S.W., Lewis, J.A., Brodsky, J.L., and Pipas, J.M. (2000). Species-specific elements in the large T-antigen J domain are required for cellular transformation and DNA replication by simian virus 40.Mol. Cell. Biol.20, 5749-5757. (10.1128/MCB.20.15.5749-5757.2000)
  80. Swanson, R., Locher, M., and Hochstrasser, M. (2001). A conserved ubiquitin ligase of the nuclear envelop/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation.Genes Dev.15, 2660-2674. (10.1101/gad.933301)
  81. Taxis, C., Hitt, R., Park, S.H., Deak, P.M., Kostova, Z., and Wolf, D.H. (2003). Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD.J. Biol. Chem.278, 35903-35913. (10.1074/jbc.M301080200)
  82. Thomas, P.J., Qu, B.H., and Pedersen, P.L. (1995). Defective protein folding as a basis of human disease.Trends Biochem. Sci.20, 456-459. (10.1016/S0968-0004(00)89100-8)
  83. Tsai, B., Ye, Y., and Rapoport, T.A. (2002). Retro-translocation of proteins from the endoplasmic reticulum into the cytosol.Nat. Rev. Mol. Cell. Biol.3, 246-255. (10.1038/nrm780)
  84. Vashist, S., and Ng, D.T. (2004). Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control.J. Cell Biol.165, 41-52. (10.1083/jcb.200309132)
  85. 10.1091/mbc.11.10.3425
  86. Walsh, P., Bursac, D., Law, Y., Cyr, D., and Lithgow, T. (2004). The J-protein family: modulating protein assembly, disassembly and translocation.EMBO Rep.5, 567-571. (10.1038/sj.embor.7400172)
  87. Ward, C.L., Omura, S., and Kopito, R.R. (1995). Degradation of CFTR by the ubiquitin-proteasome pathway.Cell83, 121-127. (10.1016/0092-8674(95)90240-6)
  88. Wiech, H., Buchner, J., Zimmermann, R., and Jakob, U. (1992). Hsp90 chaperones protein folding in vitro.Nature358, 169-170. (10.1038/358169a0)
  89. Willingham, S., Outeiro, T.F., DeVit, M.J., Lindquist, S.L., and Muchowski, P.J. (2003). Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein.Science302, 1769-1772. (10.1126/science.1090389)
  90. Yang, Y., Janich, S., Cohn, J.A., and Wilson, J.M. (1993). The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment.Proc. Natl. Acad. Sci. USA90, 9480-9484. (10.1073/pnas.90.20.9480)
  91. Young, J.C., Moarefi, I., and Hartl, F.U. (2001). Hsp90, a specialized but essential protein-folding tool.J. Cell Biol.154, 267-273. (10.1083/jcb.200104079)
  92. Young, J.C., Schneider, C., and Hartl, F.U. (1997). In vitro evidence that hsp90 contains two independent chaperone sites.FEBS Lett.418, 139-143. (10.1016/S0014-5793(97)01363-X)
  93. Zhang, F., Kartner, N., and Lukacs, G.L. (1998). Limited proteolysis as a probe for arrested conformational maturation of delta F508 CFTR.Nat. Struct. Biol.5, 180-183. (10.1038/nsb0398-180)
  94. Zhang, Y., Michaelis, S., and Brodsky, J.L. (2002). CFTR expression and ER-associated degradation in yeast.Methods Mol. Med.70, 257-265. (10.1385/1-59259-187-6:257)
  95. 10.1091/mbc.12.5.1303
  96. Zou, J., Guo, Y., Guettouche, T., Smith, D.F., and Voellmy, R. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1.Cell94, 471-480. (10.1016/S0092-8674(00)81588-3)
Dates
Type When
Created 21 years ago (Sept. 2, 2004, 3:20 a.m.)
Deposited 4 years, 2 months ago (June 25, 2021, 7:54 a.m.)
Indexed 3 months, 2 weeks ago (May 16, 2025, 6:04 a.m.)
Issued 20 years, 10 months ago (Nov. 1, 2004)
Published 20 years, 10 months ago (Nov. 1, 2004)
Published Print 20 years, 10 months ago (Nov. 1, 2004)
Funders 0

None

@article{Youker_2004, title={Distinct Roles for the Hsp40 and Hsp90 Molecular Chaperones during Cystic Fibrosis Transmembrane Conductance Regulator Degradation in Yeast}, volume={15}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e04-07-0584}, DOI={10.1091/mbc.e04-07-0584}, number={11}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Youker, Robert T. and Walsh, Peter and Beilharz, Traude and Lithgow, Trevor and Brodsky, Jeffrey L.}, year={2004}, month=nov, pages={4787–4797} }