Abstract
Caveolin-1, a structural protein of caveolae, is cleared unusually slowly from the Golgi apparatus during biosynthetic transport. Furthermore, several caveolin-1 mutant proteins accumulate in the Golgi apparatus. We examined this behavior further in this mutant study. Golgi accumulation probably resulted from loss of Golgi exit information, not exposure of cryptic retention signals, because several deletion mutants accumulated in the Golgi apparatus. Alterations throughout the protein caused Golgi accumulation. Thus, most probably acted indirectly, by affecting overall conformation, rather than by disrupting specific Golgi exit motifs. Consistent with this idea, almost all the Golgi-localized mutant proteins failed to oligomerize normally (even with an intact oligomerization domain), and they showed reduced raft affinity in an in vitro detergent-insolubility assay. A few mutant proteins formed unstable oligomers that migrated unusually slowly on blue native gels. Only one mutant protein, which lacked the first half of the N-terminal hydrophilic domain, accumulated in the Golgi apparatus despite normal oligomerization and raft association. These results suggested that transport of caveolin-1 through the Golgi apparatus is unusually difficult. The conformation of caveolin-1 may be optimized to overcome this difficulty, but remain very sensitive to mutation. Disrupting conformation can coordinately affect oligomerization, raft affinity, and Golgi exit of caveolin-1.
References
53
Referenced
51
-
Arbuzova, A., Wang, L., Wang, J., Hangyas-Mihalyne, G., Murray, D., Honig, B., and McLaughlin, S. (2000). Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS.Biochemistry39, 10330-10339.
(
10.1021/bi001039j
) -
Arreaza, G., and Brown, D.A. (1995). Sorting and intracellular trafficking of a glycosylphosphatidylinositol-anchored protein and two hybrid proteins with the same ectodomain in MDCK kidney epithelial cells.J. Biol. Chem.270, 23641-23647.
(
10.1074/jbc.270.40.23641
) -
Bretscher, M.S., and Munro, S. (1993). Cholesterol and the Golgi apparatus.Science261, 1280-1281.
(
10.1126/science.8362242
) -
Breuza, L., Corby, S., Arsanto, J.P., Delgrossi, M.H., Scheiffele, P., and Le Bivic, A. (2002). The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells.J. Cell Sci.115, 4457-4467.
(
10.1242/jcs.00130
) -
Brown, D.A., and London, E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts.J. Biol. Chem.275, 17221-17224.
(
10.1074/jbc.R000005200
) -
Brown, D.A., and Rose, J.K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface.Cell68, 533-544.
(
10.1016/0092-8674(92)90189-J
) -
Choy, E., Chiu, V.K., Silletti, J., Feoktistov, M., Morimoto, T., Michaelson, D., Ivanov, I.E., and Philips, M.R. (1999). Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi.Cell98, 69-80.
(
10.1016/S0092-8674(00)80607-8
) -
Conrad, P.A., Smart, E.J., Ying, Y.S., Anderson, R.G.W., and Bloom, G.S. (1995). Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps.J. Cell Biol.131, 1421-1433.
(
10.1083/jcb.131.6.1421
) -
Denker, S.P., McCaffrey, J.M., Palade, G.E., Insel, P.A., and Farquhar, M.G. (1996). Differential distribution of α subunits and βγ subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas.J. Cell Biol.133, 1027-1040.
(
10.1083/jcb.133.5.1027
) -
Dietzen, D.J., Hastings, W.R., and Lublin, D.M. (1995). Caveolin is palmitoylated on multiple cysteine residues: palmitoylation is not necessary for localization of caveolin to caveolae.J. Biol. Chem.270, 6838-6842.
(
10.1074/jbc.270.12.6838
) -
Dupree, P., Parton, R.G., Raposo, G., Kurzchalia, T.V., and Simons, K. (1993). Caveolae and sorting in thetrans-Golgi network of epithelial cells.EMBO J.12, 1597-1605.
(
10.1002/j.1460-2075.1993.tb05804.x
) -
Eilers, M., Patel, A.B., Liu, W., and Smith, S.O. (2002). Comparison of helix interactions in membrane and soluble alpha-bundle proteins.Biophys. J.82, 2720-2736.
(
10.1016/S0006-3495(02)75613-0
) -
Fernandez, I., Ying, Y., Albanesi, J., and Anderson, R.G.W. (2002). Mechanism of caveolin filament assembly.Proc. Natl. Acad. Sci. USA99, 11193-11198.
(
10.1073/pnas.172196599
) -
Fra, A.M., Williamson, E., Simons, K., and Parton, R.G. (1994). Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae.J. Biol. Chem.269, 30745-30748.
(
10.1016/S0021-9258(18)47340-1
) - Hayashi, K., Matsuda, S., Machida, K., Yamamoto, T., Fukuda, Y., Nimura, Y., Hayakawa, T., and Hamaguchi, M. (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers.Cancer Res.61, 2361-2364.
-
Kalinina, E.V., and Fricker, L.D. (2003). Palmitoylation of carboxypeptidase D. Implications for intracellular trafficking.J. Biol. Chem.278, 9244-9249.
(
10.1074/jbc.M209379200
) -
Kanaani, J., el-Husseini Ael, D., Aguilera-Moreno, A., Diacovo, J.M., Bredt, D.S., and Baekkeskov, S. (2002). A combination of three distinct trafficking signals mediates axonal targeting and presynaptic clustering of GAD65.J. Cell Biol.158, 1229-1238.
(
10.1083/jcb.200205053
) -
Kurzchalia, T.V., Dupree, P., Parton, R.G., Kellner, R., Virta, H., Lehnert, M., and Simons, K. (1992). VIP21, a 21-kD membrane protein, is an integral component of trans-Golgi-network-derived transport vesicles.J. Cell Biol.118, 1003-1014.
(
10.1083/jcb.118.5.1003
) -
Lee, H., Park, D.S., Razani, B., Russell, R.G., Pestell, R.G., and Lisanti, M.P. (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia.Am. J. Pathol.161, 1357-1369.
(
10.1016/S0002-9440(10)64412-4
) -
Lipardi, C., Mora, R., Colomer, V., Paladino, S., Nitsch, L., Rodriguez-Boulan, E., and Zurzolo, C. (1998). Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells.J. Cell Biol.140, 617-626.
(
10.1083/jcb.140.3.617
) -
London, E., and Brown, D.A. (2000). Insolubility of lipids in Triton X-100. Physical origin and relationship to sphingolipid/cholesterol domains (rafts).Biochim. Biophys. Acta1508, 182-195.
(
10.1016/S0304-4157(00)00007-1
) -
Luetterforst, R., Stang, E., Zorzi, N., Carozzi, A., Way, M., and Parton, R.G. (1999). Molecular characterization of caveolin association with the Golgi complex: identification of a cis-Golgi targeting domain in the caveolin molecule.J. Cell Biol.145, 1443-1460.
(
10.1083/jcb.145.7.1443
) -
Machleidt, T., Li, W.P., Liu, P., and Anderson, R.G.W. (2000). Multiple domains in caveolin-1 control its intracellular traffic.J. Cell Biol.148, 17-28.
(
10.1083/jcb.148.1.17
) -
Martínez-Menárguez, J.A., Prekeris, R., Oorschot, V.M.J., Scheller, R., Slot, J.W., Geuze, H.J., and Klumperman, J. (2001). Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport.J. Cell Biol.155, 1213-1224.
(
10.1083/jcb.200108029
) -
Mironov, A.A.et al. (2001). Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae.J. Cell Biol.155, 1225-1238.
(
10.1083/jcb.200108073
) -
Monier, S., Dietzen, D.J., Hastings, W.R., Lublin, D.M., and Kurzchalia, T.V. (1996). Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol.FEBS Lett.388, 143-149.
(
10.1016/0014-5793(96)00519-4
) 10.1091/mbc.6.7.911
-
Mora, R., Bonilha, V.L., Marmorstein, A., Scherer, P.E., Brown, D., Lisanti, M.P., and Rodriguez-Boulan, E. (1999). Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1.J. Biol. Chem.274, 25708-25717.
(
10.1074/jbc.274.36.25708
) -
Munro, S. (1995). An investigation of the role of transmembrane domains in Golgi protein retention.EMBO J.14, 4695-4704.
(
10.1002/j.1460-2075.1995.tb00151.x
) -
Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T.V., and Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein.Proc. Natl. Acad. Sci. USA92, 10339-10343.
(
10.1073/pnas.92.22.10339
) -
Navarro-Lérida, I., Alberto Álvarez-Barrientos, F.G., and Ignacio, and Rodriguez-Crespo, I. (2002). Distance-dependent cellular palmitoylation of denovo-designed sequences and their translocation to plasma membrane subdomains.J. Cell Sci.115, 3119-3130.
(
10.1242/jcs.115.15.3119
) -
Nichols, B.J. (2002). A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex.Nat. Cell Biol.4, 374-378.
(
10.1038/ncb787
) -
Ostermeyer, A.G., Beckrich, B.T., Ivarson, K.A., Grove, K.E., and Brown, D.A. (1999). Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. Methyl-beta-cyclodextrin does not affect cell-surface transport of a GPI-anchored protein.J. Biol. Chem.274, 34459-34466.
(
10.1074/jbc.274.48.34459
) -
Ostermeyer, A.G., Paci, J.M., Zeng, Y., Lublin, D.M., Munro, S., and Brown, D.A. (2001). Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets.J. Cell Biol.152, 1071-1078.
(
10.1083/jcb.152.5.1071
) -
Ostermeyer, A.G., Ramcharan, L.T., Zeng, Y., Lublin, D.M., and Brown, D.A. (2004). Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets.J. Cell Biol.164, 69-78.
(
10.1083/jcb.200303037
) -
Parolini, I.et al. (1999). Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex.J. Biol. Chem.274, 25718-25725.
(
10.1074/jbc.274.36.25718
) -
Pelham, H.R.B., and Rothman, J.E. (2000). The debate about transport in the Golgi—two sides of the same coin?Cell102, 713-719.
(
10.1016/S0092-8674(00)00060-X
) -
Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R., and Anderson, R.G.W. (1992). Caveolin, a protein component of caveolae membrane coats.Cell68, 673-682.
(
10.1016/0092-8674(92)90143-Z
) -
Sargiacomo, M., Scherer, P.E., Tang, Z.L., Kübler, E., Song, K.S., Sanders, M.C., and Lisanti, M.P. (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization.Proc. Natl. Acad. Sci. USA92, 9407-9411.
(
10.1073/pnas.92.20.9407
) -
Schagger, H., Cramer, W.A., and von Jagow, G. (1994). Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis.Anal. Biochem.217, 220-230.
(
10.1006/abio.1994.1112
) -
Scheiffele, P., Verkade, P., Fra, A.M., Virta, H., Simons, K., and Ikonen, E. (1998). Caveolin-1 and -2 in the exocytic pathway of MDCK cells.J. Cell Biol.140, 795-806.
(
10.1083/jcb.140.4.795
) -
Schlegel, A., and Lisanti, M.P. (2000). A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo.J. Biol. Chem.275, 21605-21617.
(
10.1074/jbc.M002558200
) -
Schlegel, A., Schwab, R.B., Scherer, P.E., and Lisanti, M.P. (1999). A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro.J. Biol. Chem.274, 22660-22667.
(
10.1074/jbc.274.32.22660
) -
Schroeder, R.J., Ahmed, S.N., Zhu, Y., London, E., and Brown, D.A. (1998). Cholesterol and sphingolipid enhance the Triton X-100-insolubility of GPI-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains.J. Biol. Chem.273, 1150-1157.
(
10.1074/jbc.273.2.1150
) -
Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., and Simons, K. (2003). Resistance of cell membranes to different detergents.Proc. Natl. Acad. Sci. USA100, 5795-5800.
(
10.1073/pnas.0631579100
) -
Shogomori, H., and Brown, D.A. (2003). Use of detergents to study membrane rafts: The good, the bad, and the ugly.Biol. Chem.384, 1259-1263.
(
10.1515/BC.2003.139
) -
Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., and Lisanti, M.P. (1999). Caveolins, liquid-ordered domains, and signal transduction.Mol. Cell. Biol.19, 7289-7304.
(
10.1128/MCB.19.11.7289
) -
Takida, S., and Wedegaertner, P.B. (2003). Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gβγ.J. Biol. Chem.278, 17284-17290.
(
10.1074/jbc.M213239200
) -
Takimoto, K., Yang, E.K., and Conforti, L. (2002). Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of Kv4.3 channels.J. Biol. Chem.277, 26904-26911.
(
10.1074/jbc.M203651200
) -
Thiele, C., Hannah, M.J., Fahrenholz, F., and Huttner, W.B. (2000). Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles.Nat. Cell Biol.2, 42-49.
(
10.1038/71366
) 10.1091/mbc.01-06-0317
-
van't Hof, W., and Crystal, R.G. (2002). Fatty acid modification of the cox-sackievirus and adenovirus receptor.J. Virol.76, 6382-6386.
(
10.1128/JVI.76.12.6382-6386.2002
) -
Xu, X., and London, E. (2000). The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation.Biochemistry39, 843-849.
(
10.1021/bi992543v
)
Dates
Type | When |
---|---|
Created | 21 years ago (Aug. 10, 2004, 9:23 p.m.) |
Deposited | 4 years, 2 months ago (June 24, 2021, 6:56 p.m.) |
Indexed | 1 year, 2 months ago (July 5, 2024, 11:15 a.m.) |
Issued | 20 years, 11 months ago (Oct. 1, 2004) |
Published | 20 years, 11 months ago (Oct. 1, 2004) |
Published Print | 20 years, 11 months ago (Oct. 1, 2004) |
@article{Ren_2004, title={Conformational Defects Slow Golgi Exit, Block Oligomerization, and Reduce Raft Affinity of Caveolin-1 Mutant Proteins}, volume={15}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e04-06-0480}, DOI={10.1091/mbc.e04-06-0480}, number={10}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Ren, Xiaoyan and Ostermeyer, Anne G. and Ramcharan, Lynne T. and Zeng, Youchun and Lublin, Douglas M. and Brown, Deborah A.}, year={2004}, month=oct, pages={4556–4567} }